首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of several glucocorticosteroids on cyclic GMP accumulation, guanylate cyclase activity, calcium influx, lysosomal enzyme secretion, and phagocytosis were studied in human neutrophils. Contact between neutrophils and serum-treated zymosan particles, in the presence of calcium at pH 7.4, triggered these cellular events within five minutes. Each of these neutrophil functions was markedly inhibited by methylprednisolone sodium succinate, triamcinolone acetonide hemisuccinate and paramethasone acetate but was unaffected by two mineralo-corticosteroids. Human neutrophil soluble guanylate cyclase activity was not changed by the glucocorticoids. Inhibition of phagocytosis by, and lysosomal enzyme secretion from, neutrophils by glucocorticosteroids may be the result of a reduction in cyclic GMP accumulation within these cells. The data suggest that glucocorticosteroids inhibit cyclic GMP accumulation in neutrophils by reducing the influx of extracellular calcium into the cells, thereby limiting the availability of intracellular calcium for metabolic processes associated with the accumulation of cyclic GMP.  相似文献   

2.
Intratracheal instillation of the monocyte chemoattractant JE/monocyte chemoattractant protein (MCP)-1 in mice was recently shown to cause increased alveolar monocyte accumulation in the absence of lung inflammation, whereas combined JE/MCP-1/lipopolysaccharide (LPS) challenge provoked acute lung inflammation with early alveolar neutrophil and delayed alveolar monocyte influx. We evaluated the role of resident alveolar macrophages (rAM) in these leukocyte recruitment events and related phenomena of lung inflammation. Depletion of rAM by pretreatment of mice with liposomal clodronate did not affect the JE/MCP-1-driven alveolar monocyte accumulation, despite the observation that rAM constitutively expressed the JE/MCP-1 receptor CCR2, as analyzed by flow cytometry and immunohistochemistry. In contrast, depletion of rAM largely suppressed alveolar cytokine release as well as neutrophil and monocyte recruitment profiles upon combined JE/MCP-1/LPS treatment. Despite this strongly attenuated alveolar inflammatory response, increased lung permeability was still observed in rAM-depleted mice undergoing JE/MCP-1/LPS challenge. Lung leakage was abrogated by codepletion of circulating neutrophils or administration of anti-CD18. Collectively, rAM are not involved in JE/MCP-1-driven alveolar monocyte recruitment in noninflamed lungs but largely contribute to the alveolar cytokine response and enhanced early neutrophil and delayed monocyte influx under inflammatory conditions (JE/MCP-1/LPS deposition). Loss of lung barrier function observed under these conditions is rAM independent but involves circulating neutrophils via beta(2)-integrin engagement.  相似文献   

3.
Following allergen challenge of sensitized mice, neutrophils are the first inflammatory cells found in bronchoalveolar lavage (BAL) fluid. To determine the underlying mechanism for their accumulation, mice were sensitized to OVA on days 0 and 14, and received, on day 28, a single intranasal challenge (s.i.n.) with either OVA or ragweed. Eight hours after the s.i.n., BAL fluid was obtained. BALB/c mice sensitized and challenged with OVA showed significantly higher total cell counts and numbers of neutrophils in BAL fluid compared to the OVA-sensitized and ragweed-challenged or nonsensitized mice. Levels of neutrophil chemokines in BAL fluid supernatants were markedly elevated in the sensitized and OVA-challenged mice; Fc epsilon RI-deficient mice showed comparable numbers of neutrophils and neutrophil chemokines in BAL fluid after s.i.n. But in sensitized mice lacking the Fc common gamma-chain and B cell-deficient mice, the number of neutrophils and levels of neutrophil chemokines in BAL fluid were significantly lower. Further, mice lacking the FcgammaRIII did not develop this early neutrophil influx. Neutrophil infiltration could be induced in naive mice following intranasal instillation of allergen combined with allergen-specific IgG1. In addition, macrophages from sensitized mice were stimulated with allergen and activated to produce neutrophil chemokines. These results demonstrate that neutrophil influx after allergen challenge requires prior sensitization, is allergen-specific, is mediated through FcgammaRIII, and is dependent on the presence of Ab.  相似文献   

4.
Intratracheal administration of low molecular mass (LMM) hyaluronan (200 kDa) results in greater neutrophil infiltration in the lungs of TLR4(-/-) mice compared with that in wild-type mice. In general, enhanced neutrophil infiltration in tissue is due to cell influx; however, neutrophil apoptosis also plays an important role. We have assessed the effects of TLR4 in the regulation of neutrophil apoptosis in response to administration of LMM hyaluronan. We found that apoptosis of inflammatory neutrophils is impaired in TLR4(-/-) mice, an effect that depends upon the IFN-β-mediated TRAIL/TRAILR system. IFN-β levels were decreased in LMM hyaluronan-treated TLR4-deficient neutrophils. The treatment of inflammatory neutrophils with IFN-β enhanced the levels of TRAIL and TRAILR 2. LMM hyaluronan-induced inflammatory neutrophil apoptosis was substantially prevented by anti-TRAIL neutralizing mAb. We conclude that decreased IFN-β levels decrease the activity of the TRAIL/TRAILR system in TLR4-deficient neutrophils, leading to impaired apoptosis of neutrophils and resulting in abnormal accumulation of neutrophils in the lungs of LMM hyaluronan-treated mice. Thus, TLR4 plays a novel homeostatic role in noninfectious lung inflammation by accelerating the elimination of inflammatory neutrophils.  相似文献   

5.
Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps   总被引:1,自引:0,他引:1  
Insemination always stimulates neutrophil migration into the female reproductive tract (FRT), which eliminates excess spermatozoa and bacterial contaminants introduced by the breeding process. However, the presence of neutrophils in the FRT at the time of semen deposition has been shown to result in sperm-neutrophil binding that reduces motility and fertility. Although the binding and trapping mechanism has not been determined, seminal plasma (SP) was found to include a protein factor or factors that reduced sperm-neutrophil binding and improved fertility of sperm inseminated in the presence of neutrophils. Although DNase has been shown to be present in the SP of different species and has been associated with improved fertility in bulls, the mechanism(s) explaining this association and the paradox of DNA-packed cells being associated with DNase have remained unresolved. We demonstrate that sperm-activated neutrophils extrude their DNA, which in turn traps sperm cells and hinders their motility (and ultimately may hinder sperm transport to the fertilization site). DNase activity present in the SP digests the extruded DNA and frees entangled spermatozoa, which in turn may allow more spermatozoa to reach the oviduct, and explains at least one mechanism by which SP increases the rate of fertility. The ability of SP proteins to suppress neutrophil activation in the presence of spermatozoa did not render neutrophils incapable of combating bacteria, demonstrating that SP proteins are highly selective for suppressing neutrophils activated by spermatozoa, but not by bacteria.  相似文献   

6.
Surface bound IgG induces neutrophil degranulation and production of superoxide radicals by a mechanism that is not inhibited by either pertussis toxin or cholera toxin, whereas these functions induced by soluble mediators such as FMLP and soluble aggregates of IgG are profoundly inhibited by pertussis toxin. Interaction of neutrophils with surface bound IgG triggers the loss of 32P labeled PIP2 and PIP and the influx of extracellular calcium. Neither of these cellular events when induced by surface bound IgG is inhibited by pertussis toxin. These observations suggest that neutrophil activation induced by surface bound IgG proceeds along a pathway which is not regulated by proteins which are inhibited by either pertussis or cholera toxins.  相似文献   

7.
Neutrophils occur in tissues of the female reproductive tract (FRT) under non-infected conditions. These cells generally enter tissues under the influence of chemoattractants called chemokines. Primary epithelial cells (EC) from FRT were a potent source of chemokines, IL-8 being the chief neutrophil chemoattractant secreted. Blocking with neutralizing anti-IL-8 showed that IL-8 did not account for all of the chemoattraction observed. A mixture of 25 ng/mL rIL-8 and 1 ng/mL rGM-CSF mediated 2.7-fold more chemotaxis than that expected if the two agents were additive. We then found that GM-CSF was produced by EC in amounts that synergised strongly with IL-8 to enhance chemotaxis. Treatment of uterine EC conditioned medium with saturating doses of anti-IL-8 plus anti-GM-CSF antibodies produced an 84% inhibition of chemotaxis. These findings demonstrate that the majority of neutrophil chemoattractant activity produced by FRT EC results from the synergistic effects of IL-8 and GM-CSF.  相似文献   

8.
Pulmonary surfactant with surfactant-associated proteins (PS+SAP) decreases pulmonary inflammation by suppressing neutrophil activation. We have observed that PS+SAP inserts channels into artificial membranes, depolarizes neutrophils, and depresses calcium influx and function in stimulated neutrophils. We hypothesize that PS+SAP suppresses neutrophil activation by depletion of internal Ca(++) stores and that PS+SAP induces depletion through release of Ca(++) stores and through inhibition of Ca(++) influx. Our model predicts that PS+SAP releases Ca(++) stores through insertion of channels, depolarization of neutrophils, and activation of a G protein-dependent pathway. If the model of channel insertion and membrane depolarization is accurate, then gramicidin-a channel protein with properties similar to those of PS+SAP-is expected to mimic these effects. Human neutrophils were monitored for [Ca(++)] responses after exposure to one of two different PS+SAP preparations, a PS-SAP preparation, gramicidin alone, and gramicidin reconstituted with phospholipid (PLG). [Ca(++)] responses were reexamined following preexposure to inhibitors of internal Ca(++) release or the G protein pathway. We observed that (i) 1% PS+SAP-but not PS-SAP-causes transient increase of neutrophil [Ca(++)] within seconds of exposure; (ii) 1% PLG-but not gramicidin alone-closely mimics the effect of PS+SAP on Ca(++) response; (iii) PS+SAP and PLG equally depolarize neutrophils; (iv) direct inhibition of internal Ca(++) stores releases or of G protein activation suppresses Ca(++) responses to PS+SAP and PLG; and (v) preexposure to either PS+SAP or PLG inhibits Ca(++) influx following fMLP stimulation. We conclude that PS+SAP independently depolarizes neutrophils, releases Ca(++) from internal stores by a G protein-mediated pathway, and alters subsequent neutrophil response to physiologic stimulants by depleting internal Ca(++) stores and by inhibiting Ca(++) influx during subsequent fMLP activation. The mimicking of these results by PLG supports the hypothesis that PS+SAP initiates depolarization via channel insertion into neutrophil plasma membrane.  相似文献   

9.
Neutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG. Recruited neutrophils were shown to phagocyte BCG and a large number of neutrophils undergo apoptosis within 24 h. Notably, the great majority of apoptotic neutrophils were infected by BCG. Increased lipid body (lipid droplets) formation, accompanied by prostaglandin E(2) (PGE(2)) and TGF-beta1 synthesis, occurred in parallel to macrophage uptake of apoptotic cells. Lipid body and PGE(2) formation was observed after macrophage exposure to apoptotic, but not necrotic or live neutrophils. Blockage of BCG-induced lipid body formation significantly inhibited PGE(2) synthesis. Pre-treatment with the pan-caspase inhibitor zVAD inhibited BCG-induced neutrophil apoptosis and lipid body formation, indicating a role for apoptotic neutrophils in macrophage lipid body biogenesis in infected mice. In conclusion, BCG infection induced activation and apoptosis of infected neutrophils at the inflammatory site. The uptake of apoptotic neutrophils by macrophages leads to TGF-beta1 generation and PGE(2)-derived lipid body formation, and may have modulator roles in mycobacterial pathogenesis.  相似文献   

10.
This study was designed to examine the effects of i.p.-injected alpha-melanocyte stimulating hormone (MSH) on murine neutrophil migration into subcutaneously implanted sponges in response to IL-1-alpha, TNF-alpha, and C5a. The results show that as little as 0.1 ml of 5 x 10(-7) M MSH injected i.p. significantly blocked the accumulation of neutrophils in sponges in response to IL-1. This action of MSH was dose dependent, reversible, and was maximally effective if MSH was given at the same time as the injection of IL-1. This effect of MSH was not restricted to IL-1-induced neutrophil emigration, because MSH also antagonized the accumulation of neutrophils in response to both TNF and C5a. The proopiomelanocortin-derived peptide ACTH which contains the MSH sequence also significantly reduced neutrophil accumulation in response to IL-1, although less effectively than MSH. Similar studies with beta-endorphin showed that it had no effect on neutrophil accumulation in this system. The direct injection of MSH, beta-endorphin and ACTH into sponges or i.p. did not stimulate a neutrophil emigration and eliminated the possibility that MSH or ACTH suppressed the neutrophil influx in response to IL-1, TNF, or C5a by competing for circulating neutrophils. The action of MSH on IL-1, TNF, and C5a-induced neutrophil emigration suggests that this peptide may be an important regulator of the inflammatory response.  相似文献   

11.
Neutrophil trafficking in lung involves transendothelial migration, migration in tissue interstitium, and transepithelial migration. In a rat model of IgG immune complex-induced lung injury, it was demonstrated that neutrophil emigration involves regulatory mechanisms including complement activation, cytokine regulation, chemokine production, activation of adhesion molecules, and their respective counter receptors. The process is presumably initiated and modulated by the production of early response cytokines and chemokines from lung cells, especially from alveolar macrophages. TNF-alpha and IL-1 up-regulate intracellular adhesion molecule-1 (ICAM-1) and E-selectin, setting the stage for neutrophil migration through endothelium. The CXC chemokines, such as macrophage inflammatory protein (MIP)-2 and cytokine-inducible neutrophil chemoattractant (CINC), constitute chemokine gradient to orchestrate neutrophil migration in lung. Complement activation induced by IgG immune complex deposition is another important event leading to neutrophil accumulation in lung. Complement activation product C5a not only plays an important role in chemoattracting neutrophils into lung, but regulates adhesion molecules, chemokines, and cytokines expression. In addition, oxidative stress may regulate neutrophil accumulation in lung by modulation of adhesion molecule activation and chemokine production. In this review, we focus on the current knowledge of the mechanisms leading to accumulation of neutrophils during acute lung injury.  相似文献   

12.
Macrophage-derived cytokines may provoke the inflammatory response in lung injury. Because macrophage influx is a prominent feature of the cellular inflammatory response accompanying the development of bronchopulmonary dysplasia, we hypothesized that blocking macrophage influx would reduce overall cellular influx and oxidative damage. Newborn rats were exposed at birth to 95% O(2) or air for 1 wk, and hyperoxia-exposed pups were injected with anti-monocyte chemoattractant protein-1 (MCP-1) or IgG control on days 3-5. MCP-1 was increased in bronchoalveolar lavage fluid and in histological sections from the 95% O(2)-exposed, IgG-injected pups compared with air-exposed controls. At 1 wk, anti-MCP-1-treated pups had reduced leukocyte numbers, both macrophages and neutrophils, in bronchoalveolar lavage fluid compared with IgG-treated controls. Cytokine-induced neutrophil chemoattractant-1, the rat analog of IL-8, was not significantly decreased in lavage fluid but was reduced in lung cells in anti-MCP-1-treated pups. Tissue carbonyls, a measure of protein oxidation, were decreased in anti-MCP-1-treated pups. Anti-MCP-1 treatment prevented neutrophil influx and reduced protein oxidation in hyperoxia-exposed newborn rats.  相似文献   

13.
Intravenous Ig preparations (IVIg), originally developed as a substitution therapy for patients with low plasma IgG, are nowadays frequently used in the treatment of various immune diseases. However, the mechanism of action of IVIg in these diseases remains elusive and is often referred to as "immunomodulatory." We hypothesized that monomeric IgG may act as a low-affinity FcgammaR antagonist and sought experimental evidence for this hypothesis. Human neutrophils as well FcgammaRIIa-transfected IIA1.6 cells were used as FcgammaR-positive cells and aggregated IgG (aIgG) or stable dimeric IgG as FcgammaR-specific agonists for these cells. We found that monomeric IgG purified from IVIg at concentrations similar to that of IgG in plasma, diminished the binding of stable dimeric IgG to FcgammaRIIa transfectants, reduced aIgG-induced influx of Ca(2+) ions into the cytosol of neutrophils, and attenuated the aIgG-induced release of elastase. Notably, monomeric IgG by itself did not elicit these responses, nor did it affect these processes in response to fMLP. Absorption of IgG from normal plasma revealed that plasma IgG exerted similar effects as monomeric IgG in IVIg. In addition, adding monomeric IgG to blood of healthy volunteers showed a dose-dependent decrease of aIgG-induced elastase release. Finally, we observed decreased aIgG-induced polymorphonuclear neutrophil responses in two hypogammaglobulinemic patients upon treatment with IVIg. We conclude that monomeric IgG at physiological levels acts as a low-affinity FcgammaR antagonist. Moreover, FcgammaR antagonism constitutes an immunomodulatory effect of IVIg.  相似文献   

14.
Cells of the endocervix are responsible for the secretion of mucins, which provide an additional layer of protection to the female reproductive tract (FRT). This barrier is likely fortified with IgA as has previously been shown in the gastrointestinal tract and lungs of mice. Mucus associated IgA can facilitate clearance of bacteria. While a similar function for IgG has been proposed, an association with mucus has not yet been demonstrated. Here we find that IgA and IgG are differentially associated with the different types of mucus of the FRT. We observed that while both IgA and IgG are stably associated with cervical mucus, only IgG is associated with cervicovaginal mucus. These findings reveal that antibodies can bind tightly to mucus, where they can play a significant role in the fortification of the mucus barriers of the FRT. It may be possible to harness this interaction in the development of vaccines designed to protect the FRT mucosal barriers from sexually transmitted diseases such as HIV.  相似文献   

15.
Current understanding of specific defense mechanisms in the context of neutropenic infections is limited. It has previously been reported that invasive aspergillosis, a prototypic opportunistic infection in neutropenic hosts, is associated with marked accumulation of inflammatory dendritic cells (DCs) in the lungs. Given recent data indicating that neutrophils can modulate immune responses independent of their direct microbial killing, we hypothesized that neutropenia impacts the host response to Aspergillus by determining the migration and phenotype of lung DCs. Inflammatory DCs, but not other DC subsets, were found to accumulate in the lungs of neutropenic hosts challenged with killed or live-attenuated Aspergillus as compared with nonneutropenic hosts, indicating that the accumulation was independent of neutrophil microbicidal activity. The mechanism of this accumulation in neutropenic hosts was found to be augmented influx of DCs, or their precursors, from the blood to the lungs. This effect was attributable to greatly elevated lung TNF expression in neutropenic as compared with nonneutropenic animals. This resulted in greater lung expression of the chemokine ligands CCL2 and CCL20, which, in turn, mediated enhanced recruitment of TNF-producing inflammatory DCs, resulting in a positive feedback cycle. Finally, in the context of neutropenic invasive aspergillosis, depletion of DCs resulted in impaired fungal clearance, indicating that this mechanism is protective for the host. These observations identify what we believe is a novel defense mechanism in invasive aspergillosis that is the result of alterations in DC traffic and phenotype and is specific to neutropenic hosts.  相似文献   

16.
Neutrophils are pivotal in the pathogenesis of ischemia-reperfusion (I/R) injury leading to muscle damage. Firm adhesion of neutrophils to the endothelium is initiated by an interaction between intercellular adhesion molecular-1 (ICAM-1) on the endothelium and beta(2)-integrins on neutrophils. Inhibition of ICAM-1-dependent binding using monoclonal antibodies has been shown to be efficacious in ameliorating I/R injury by preventing the influx of neutrophils into the ischemic tissue. We recently described a cyclic peptide that is a potent and selective inhibitor of ICAM-1 (IP25) in vitro. In this study, we tested the hypothesis that IP25-mediated blockade of ICAM-1 would inhibit neutrophil influx during reperfusion of ischemic tissue and consequently attenuate muscle injury in a tourniquet hindlimb murine model of I/R injury. Varying amounts of peptide drug were injected at the beginning of the reperfusion period. The neutrophil influx and size of infarction at the end of 2 h of reperfusion were compared with those in untreated control mice and contralateral nonischemic limbs. Mice receiving IP25 immediately before reperfusion showed a 56% reduction in neutrophil infiltration in the ischemic muscle, accompanied by a 40% reduction in the infarct size. No effect on I/R injury was seen if IP25 administration was delayed for 60 min after reperfusion. We conclude that IP25 effectively inhibits ICAM-1-mediated adhesion of neutrophils to the endothelium in mice leading to a protective effect and suggests that synthetic peptide antagonists have a potential role as therapeutic tools.  相似文献   

17.
The female reproductive tract (FRT) includes the oviducts (fallopian tubes), uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs) of the FRT take up (sample) the lumen antigens is not known. To address this question, we examined the uptake of 20–40 nm nanoparticles (NPs) applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs) and the mesenteric lymph nodes (MLNs). Chicken ovalbumin (Ova) conjugated to 20 nm NPs (NP-Ova) when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c) boosting immunization with Ova in complete Freund''s adjuvant (CFA) further elevates the systemic (IgG1 and IgG2c) as well as mucosal (IgG1 and sIgA) antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated.  相似文献   

18.
BALB/c mice sensitized to herpes simplex virus type 1 (HSV-1) develop a vigorous delayed-type hypersensitivity (DTH) response upon intradermal virus antigen challenge. Although CD4(+) T cells are a key mediator of this response, neutrophils are the most abundant cells at the antigen challenge site both initially and at the peak of the reaction. We investigated what role, if any, neutrophils play in the DTH to a viral antigen. We show here that antibody-mediated depletion of neutrophils 1 day before antigen challenge significantly suppressed ear swelling and markedly reduced cellular influx. Additionally, neutrophil depletion was associated with decreased expression of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha, as well as with a >60-fold increase in HSV-1 replication. Neutralizing antibodies to neutrophil chemoattractants MIP-2 or MIP-1alpha but not KC significantly suppressed DTH and sharply reduced neutrophil accumulation in the ear pinna. Purified bone marrow-derived neutrophils exposed to interleukin-1alpha (IL-1alpha) produced chemokines in an 8-h assay. Administration of neutralizing antibody to IL-1alpha significantly reduced ear swelling and suppressed the levels of MIP-2, MIP-1alpha, MIP-1beta, and RANTES. We conclude that neutrophils are a critical component of the DTH response to viral antigen. They are recruited to the DTH test site by MIP-2 and MIP-1alpha, where they can be activated by IL-1alpha. The infiltrating cells also help suppress virus replication in immunized mice.  相似文献   

19.
There is increasing evidence that the neutrophil chemoattractant proline-glycine-proline (PGP), derived from the breakdown of the extracellular matrix, plays an important role in neutrophil recruitment to the lung. PGP formation is a multistep process involving neutrophils, metalloproteinases (MMPs), and prolyl endopeptidase (PE). This cascade of events is now investigated in the development of lung emphysema. A/J mice were whole body exposed to cigarette smoke for 20 wk. After 20 wk or 8 wk after smoking cessation, animals were killed, and bronchoalveolar lavage fluid and lung tissue were collected to analyze the neutrophilic airway inflammation, the MMP-8 and MMP-9 levels, the PE activity, and the PGP levels. Lung tissue degradation was assessed by measuring the mean linear intercept. Additionally, we investigated the effect of the peptide L-arginine-threonine-arginine (RTR), which binds to PGP sequences, on the smoke-induced neutrophil influx in the lung after 5 days of smoke exposure. Neutrophilic airway inflammation was induced by cigarette smoke exposure. MMP-8 and MMP-9 levels, PE activity, and PGP levels were elevated in the lungs of cigarette smoke-exposed mice. PE was highly expressed in epithelial and inflammatory cells (macrophages and neutrophils) in lung tissue of cigarette smoke-exposed mice. After smoking cessation, the neutrophil influx, the MMP-8 and MMP-9 levels, the PE activity, and the PGP levels were decreased or reduced to normal levels. Moreover, RTR inhibited the smoke-induced neutrophil influx in the lung after 5 days' smoke exposure. In the present murine model of cigarette smoke-induced lung emphysema, it is demonstrated for the first time that all relevant components (neutrophils, MMP-8, MMP-9, PE) involved in PGP formation from collagen are upregulated in the airways. Together with MMPs, PE may play an important role in the formation of PGP and thus in the pathophysiology of lung emphysema.  相似文献   

20.
Phosgene inhalation causes a severe noncardiogenic pulmonary edema characterized by an influx of neutrophils into the lung. To study the role of neutrophils in lung injury and mortality after phosgene, we investigated the effects of leukocyte depletion with cyclophosphamide, inhibiting the generation of the chemotaxin leukotriene B4 with the 5-lipoxygenase inhibitor AA861 and impairing neutrophil migration with the microtubular poison colchicine. Cyclophosphamide, AA861, and colchicine injected before exposure significantly reduced percent neutrophils, protein, and thiobarbituric acid-reactive products in bronchoalveolar lavage fluid of rats exposed to phosgene (0.5 ppm X 60 min). Cyclophosphamide, AA861, and colchicine also significantly decreased mortality from phosgene (2.0 ppm X 90 min) in mice. Colchicine significantly reduced neutrophil influx, lung injury, and mortality even when given 30 min after phosgene exposure. We conclude that lung injury and mortality after phosgene exposure are associated with an influx of neutrophils into the lung. Prevention of neutrophil migration with colchicine may hold therapeutic potential in phosgene poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号