首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pond snailLymnaea stagnalis is a useful model system for studying the neural basis of behaviour but the mechanosensory inputs that impact on behaviours such as respiration, locomotion, reproduction and feeding are not known. InAplysia, the peptide sensorin-A appears to be specific to a class of central mechanosensory neurons. We show that in theLymnaea central nervous system sensorin-A immunocytochemistry reveals a discrete pattern of staining involving well over 100 neurons. Identifiable sensorin positive clusters of neurons are located in the buccal and cerebral ganglia, and a single large neuron is immunopositive in each pedal ganglion. These putative mechanosensory neurons are not in the same locations as previously identified motoneurons, interneurons or neurosecretory cells. As would be expected for a mechanoafferent, sensorin positive fibres were found in nerve tracts innervating the body wall. This study lays the foundation for future electrophysiological and behavioural analysis of these putative mechanosensory neurons.  相似文献   

2.
Although sensitization-related changes in the neural circuitry of withdrawal reflexes inAplysia are well studied, relatively few studies address the organization of the modulatory components of sensitization. In particular, it is not known whether individual modulatory loci can simultaneously influence multiple reflex circuits. There is, however, evidence that a single modulatory transmitter, serotonin, plays a pivotal role in facilitating different reflex circuits during sensitization. Furthermore, it is known that activation of a pair of serotonergic neurons, the CB1s, produces heterosynaptic facilitation of the sensorimotor connections of one of these reflex circuits. These data together raise the possibility that the CB1s may produce sensitizing changes in the neural elements of multiple reflex systems simultaneously. In the present study, we utilized immunocytochemistry and intracellular labeling to obtain anatomical evidence of CB1's possible role in modulating multiple reflex circuits. We found that two distinct neurons satisfy previously published physiological criteria for CB1. One of these, CB1, is immunoreactive to serotonin. The second cell, here named CB2, has a different neuroanatomy and is not serotonin immunoreactive. Focusing on CB1, we found (1) profuse fine processes given off by its axons in the posterior neuropil of the cerebral ganglion, (2) extensive branching and fine processes in the pleural ganglion, and (3) a branch of CB1 that projects into the pedal ganglion. These three observations are consistent with the hypothesis that, in addition to its already established role in modulating the siphon withdrawal circuit, CB1 may also modulate synaptic connections between (1) the sensory and motor neurons of the tentacle withdrawal reflex (2) the sensory neurons and interneurons of the tail and tail-elicited siphon withdrawal reflex, and (3) the sensory and motor neurons of the tail withdrawal reflex. These observations support further physiological investigations of a possible global role of CB1 in modulating the tail and tentacle withdrawal reflexes.  相似文献   

3.
Cerebral neuron C-PR is thought to play an important role in the appetitive phase of feeding behavior ofAplysia. Here, we describe the organization of input and output pathways of C-PR. Intracellular dye fills of C-PR revealed extensive arborization of processes within the cerebral and the pedal ganglia. Numerous varicosities of varying sizes may provide points of synaptic inputs and outputs.Blocking polysynaptic transmission in the cerebral ganglion eliminated the sensory inputs to C-PR from stimuli applied to the rhinophores or tentacles, indicating that this input is probably mediated by cerebral interneurons. Identified cerebral mechanoafferent sensory neurons polysynaptically excite C-PR. Stimulation of the eyes and rhinophores with light depresses C-PR spike activity, and this effect also appears to be mediated by cerebral interneurons.C-PR has bilateral synaptic actions on numerous pedal ganglion neurons, and also has effects on cerebral neurons, including the MCC, Bn cells, CBIs and the contralateral C-PR. Although the somata of these cerebral neurons are physically close to C-PR, experiments using high divalent cation-containing solutions and cutting of various connectives indicated that the effects of C-PR on other cerebral ganglion neurons (specifically Bn cells and the MCC) are mediated by interneurons that project back to the cerebral ganglion via the pedal and pleural connectives. The indirect pathways of C-PR to other cerebral neurons may help to ensure that consummatory motor programs are not activated until the appropriate appetitive motor programs, mediated by the pedal ganglia, have begun to be expressed.  相似文献   

4.
5.
A group of serotonergic cells, located in the pedal ganglia ofHelix lucorum, modulates synaptic responses of neurons involved in withdrawal behavior. Extracellular or intracellular stimulation of these serotonergic cells leads to facilitation of spike responses to noxious stimuli in the putative command neurons for withdrawal behavior. Noxious tactile stimuli elicit an increase in background spiking frequency in the modulatory neurons and a corresponding increase in stimulus-evoked spike responses in withdrawal interneurons. The serotonergic neurons have processes in the neuropil of the parieto-visceral ganglia complex, consistent with their putative role in modulating the activity of giant parietal interneurons, which send processes to the same neuropil and to the pedal ganglia. The serotonergic cells respond to noxious tactile and chemical stimuli. Although the group as a whole respond to noxious stimuli applied to any part of the body, most cells respond more to ipsilateral than contralateral stimulation, and exhibit differences in receptive areas. Intracellular investigation revealed electrical coupling between serotonergic neurons which could underlie the recruitment of members of the group not responding to a given noxious stimulus.  相似文献   

6.
The defensive withdrawal reflexes of Aplysia are important behaviors for protecting the animal from predation. Habituation and dishabituation allow for experience-dependent tuning of these reflexes and the mechanisms underlying these forms of behavioral plasticity involve changes in transmitter release from the sensory to motor neuron synapses through homosynaptic depression and the serotonin-mediated recovery from depression, respectively. Interestingly, dishabituation is reduced in older animals with no corresponding change in habituation. Here we show that the cultured sensory neurons of heavier animals (greater than 120g) that form synaptic connections with motor neurons have both reduced recovery from depression and reduced novel PKC Apl II activation with 5HT. The decrease in the recovery from depression correlated better with the size of the animal than the age of the animal. Much of this change in PKC activation and synaptic facilitation following depression can be rescued by direct activation of PKC Apl II with phorbol dibutyrate, suggesting a change in the signal transduction pathway upstream of PKC Apl II activation in the sensory neurons of larger animals.  相似文献   

7.
Serotonin immunoreactivity of neurons in the gastropod Aplysia californica   总被引:2,自引:0,他引:2  
Serotonergic neurons and axons were mapped in the central ganglia of Aplysia californica using antiserotonin antibody on intact ganglia and on serial sections. Immunoreactive axons and processes were present in all ganglia and nerves, and distinct somata were detected in all ganglia except the buccal and pleural ganglia. The cells stained included known serotonergic neurons: the giant cerebral neurons and the RB cells of the abdominal ganglion. The area of the abdominal ganglion where interneurons are located which produce facilitation during the gill withdrawal reflex was carefully examined for antiserotonin immunoreactive neurons. None were found, but two bilaterally symmetric pairs of immunoreactive axons were identified which descend from the contralateral cerebral or pedal ganglion to abdominal ganglion. Because of the continuous proximity of this pair of axons, they could be recognized and traced into the abdominal ganglion neuropil in each preparation. If serotonin is a facilitating transmitter in the abdominal ganglion, these and other antiserotonin immunoreactive axons in the pleuroabdominal connectives may be implicated in this facilitation.  相似文献   

8.
Paired, Phe-Met-Arg-Phe-NH2-ergic pleural-to-buccal projecting neurons of the pleural ganglia were suggested to be responsible for feeding arrest associated with defensive withdrawal in freshwater and terrestrial pulmonate molluscs. In the present study, the pleural-to-buccal projecting cells were, for the first time, identified in a representative opisthobranch, the carnivorous marine pteropod Clione limacina. Two symmetric neurons of its pleural ganglia were found to be similar to the pulmonate pleural-to-buccal projecting neurons in the number of neurons, positions of their cell bodies in the central nervous system, a unique, indirect route of their axon, electrotonic coupling of the left and right cells, and expression of Phe-Met-Arg-Phe-NH2-like immunoreactivity and inhibitory action on neurons participating in the motor program for feeding. In their turn, pleural-to-buccal projecting neurons receive excitatory inputs from the protractor interneurons involved in the feeding rhythm generation. Also, it was demonstrated that the pleural-to-buccal projecting cells activity positively correlates with spontaneous and induced acceleration of the locomotor rhythm. Accordingly, stimulation of the cerebral command neuron for locomotion, cell CPA1, excited pleural-to-buccal projecting neurons. We conclude that the neuronal network underlying feeding behavior in both pulmonate and opisthobranch molluscs is similarly linked to defensive behavior by pleural Phe-Met-Arg-Phe-NH2-ergic neurons, thus indicating evolutionary conservation of these pleural-buccal projections. Accepted: 22 June 1999  相似文献   

9.
Ubiquitin-mediated proteolysis in learning and memory   总被引:2,自引:0,他引:2  
Sensitization of defensive reflexes inAplysia is a simple behavioral paradigm for studying both short- and long-term memory. In the marine mollusk, as in other animals, memory has at least two phases: a short-term phase lasting minutes and a long-term phase lasting several days or longer. Short-term memory is produced by covalent modification of pre-existing proteins. In contrast, long-term memory needs gene induction, synthesis of new protein, and the growth of new synapses. The switch from short-term (STF) to long-term facilitation (LTF) inAplysia sensory neurons requires not only positive regulation through gene induction, but also the specific removal of several inhibitory proteins. One important inhibitory protein is the regulatory (R) subunit of the cAMP-dependent protein kinase (PKA). Degradation of R subunits, which is essential for initiating long-term stable memory, occurs through the ubiquitin-proteasome pathway.  相似文献   

10.
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.  相似文献   

11.
12.
The synapses between the sensory neuron (SN) and motor neuron of Aplysia undergo long-term functional and structural modulation with appropriate behavioral training or with applications of specific neuromodulators. Expression of molecules within the presynaptic terminals may be regulated in parallel with the changes evoked by the neuromodulators. We examined with immunocytochemical methods whether the level of sensorin, the SN-specific neuropeptide, is modulated in SN varicosities by the location of interaction with the target motor cell L7 and by applications of either 5-HT that evoke long-term facilitation or FMRFamide that evoke long-term depression of Aplysia sensorimotor connections in vitro. A significantly higher proportion of SN varicosities are sensorin positive when they are in contact with the proximal axons of L7 compared to varicosities of the same SNs in contact with distal L7 neurites. Both 5-HT and FMRFamide evoked changes in the efficacy and structure of sensorimotor connections that are accompanied by changes in the frequency of sensorin-positive varicosities contacting the axons of L7. More preexisting SN varicosities are stained after 5-HT, and fewer preexisting SN varicosities are stained after FMRFamide. These results suggest that the postsynaptic target and the neuromodulators not only regulate overall structure but also regulate the level of SN neuropeptide at synaptic sites. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Stimulation of the tail nerve (pedal nerve 9, p9) of the mollusk, Aplysia californica, causes release of serotonin (5-HT), which mediates sensitization of withdrawal responses. There are about 35 serotonin-immunoreactive (5-HT-ir) axons in p9, yet the cell bodies of these axons have not been located. Backfills of p9 were combined with 5-HT immunohistochemistry to locate the cell bodies of 5-HT-ir neurons with axons in p9. About 100 neurons had axons in p9. Only about ten neurons, however, were both backfilled and 5-HT-ir. These double-labeled neurons were all located in the pedal ganglion associated with p9, which had a total of approximately 42 5-HT-ir somata. The discrepancy between the number of 5-HT-ir axons and double-labeled cell bodies is not likely due to neurons having multiple axons in the nerve; intracellular fills suggest that these neurons do not branch before entering p9. Additionally, no evidence was found for peripheral 5-HT-ir cell bodies that project axons centrally through p9. Thus, approximately 70% of the neurons that give rise to the 5-HT-ir axons in tail nerve are unaccounted for, but likely to reside in the pedal ganglion.  相似文献   

14.
Neurons responding to tactile stimulation of the head with bursts of action potentials of short latency followed by passive defensive response were found in the pedal ganglia and identified as Pd13. Stimulation of one Pd13 neuron leads to inhibition of the entire locomotor generator. A whole set of neurons, identified as P2, 3, 4, and 5, activated solely by intensive tactile stimulation of the head, were found in the pleural ganglia. Stimulating one such neuron also induces inhibition of the entire locomotor generator. These pleural cells are synaptically connected with Pd13 neurons and one EPSP in Pd13 unit corresponds to each action potential in the pleural cell. This connection has a facility for potentiation, subsequently replaced by habituation. In this way, pleural neurons also introduce Pd13 neurons into the inhibitory trend when activated by intensive tactile stimulation. Application of cerucal and ergotamine (dopaminergic receptor blockers) suppresses the inhibitory effect of the Pd13 neuron and pleural cells, thus indicating dopamine involvement in the inhibitory processes occurring in passive defensive reaction.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 685–694, September–October, 1989.  相似文献   

15.
The nervous system of the marine mollusk Aplysia californica is relatively simple, consisting of approximately 20,000 neurons. The neurons are large (up to 1 mm in diameter) and identifiable, with distinct sizes, shapes, positions and pigmentations, and the cell bodies are externally exposed in five paired ganglia distributed throughout the body of the animal. These properties have allowed investigators to delineate the circuitry underlying specific behaviors in the animal1. The monosynaptic connection between sensory and motor neurons is a central component of the gill-withdrawal reflex in the animal, a simple defensive reflex in which the animal withdraws its gill in response to tactile stimulation of the siphon. This reflex undergoes forms of non-associative and associative learning, including sensitization, habituation and classical conditioning. Of particular benefit to the study of synaptic plasticity, the sensory-motor synapse can be reconstituted in culture, where well-characterized stimuli elicit forms of plasticity that have direct correlates in the behavior of the animal2,3. Specifically, application of serotonin produces a synaptic strengthening that, depending on the application protocol, lasts for minutes (short-term facilitation), hours (intermediate-term facilitation) or days (long-term facilitation). In contrast, application of the peptide transmitter FMRFamide produces a synaptic weakening or depression that, depending on the application protocol, can last from minutes to days (long-term depression). The large size of the neurons allows for repeated sharp electrode recording of synaptic strength over periods of days together with microinjection of expression vectors, siRNAs and other compounds to target specific signaling cascades and molecules and thereby identify the molecular and cell biological steps that underlie the changes in synaptic efficacy.An additional advantage of the Aplysia culture system comes from the fact that the neurons demonstrate synapse-specificity in culture4,5. Thus, sensory neurons do not form synapses with themselves (autapses) or with other sensory neurons, nor do they form synapses with non-target identified motor neurons in culture. The varicosities, sites of synaptic contact between sensory and motor neurons, are large enough (2-7 microns in diameter) to allow synapse formation (as well as changes in synaptic morphology) with target motor neurons to be studied at the light microscopic level.In this video, we demonstrate each step of preparing sensory-motor neuron cultures, including anesthetizing adult and juvenile Aplysia, dissecting their ganglia, protease digestion of the ganglia, removal of the connective tissue by microdissection, identification of both sensory and motor neurons and removal of each cell type by microdissection, plating of the motor neuron, addition of the sensory neuron and manipulation of the sensory neurite to form contact with the cultured motor neuron.Open in a separate windowClick here to view.(105M, flv)  相似文献   

16.
The pleural interneuron PlB is a white neuron in the pleural ganglion of the snail Lymnaea. We test the hypothesis that it inhibits neurons at all levels of the feeding system, using a combination of anatomy, physiology and pharmacology. There is just one PlB in each pleural ganglion. Its axon traverses the pedal and cerebral ganglia, running into the buccal ganglia. It has neuropilar branches in the regions of the cerebral and buccal ganglia where neurons that are active during feeding also branch. Activation of the PlB blocks fictive feeding, whether the feeding rhythm occurs spontaneously or is driven by a modulatory interneuron. The PlB inhibits all the neurons in the feeding network, including protraction and retraction motoneurons, central pattern generator interneurons, buccal modulatory interneurons (SO, OC), and cerebral modulatory interneurons (CV1, CGC). Only the CV1 interneuron shows discrete 1:1 IPSPs; all other effects are slow, smooth hyperpolarizations. All connections persist in Ca2+/Mg2+-rich saline, which reduces polysynaptic effects. The inhibitory effects are mimicked by 0.5 to 100 mol l–1 FMRFamide, which the PlB soma contains. We conclude that the PlB inhibits neurons in the feeding system at all levels, probably acting though the peptide transmitter FMRFamide.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00359-004-0503-x  相似文献   

17.
Mechanosensory neurons which innervate the siphon and have their cell bodies in the LE cluster of the abdominal ganglion ofAplysia have revealed many cellular and molecular processes that may play general roles in learning and memory. It was initially suggested that these cells are largely responsible for triggering the gill-withdrawal reflex evoked by weak siphon stimulation, and that most of this effect is mediated by their monosynaptic connections to gill motor neurons. This implied a simple link between plasticity at these synapses and modifications of the reflex during learning. We review more recent studies from several laboratories showing that the LE cells are not activated by very weak tactile stimuli that elicit the gill-withdrawal reflex, and that an unidentified population of siphon sensory neurons has lower mechanosensory thresholds and produces shorter latency responses. Furthermore, the direct connections between LE cells and gill motor neurons make a minor contribution when the reflex is elicited in pinned siphon preparations by light stimuli that weakly activate the LE cells. Because weak mechanical stimulation of the unrestrained siphon causes little or no LE cell activation, it is unlikely that, under natural conditions, sensitization or conditioning of reflex responses elicited by light siphon touch depends upon plasticity of LE cell synapses onto either motor or interneurons. The LE cells appear to function as nociceptors because they are tuned to noxious stimuli and, like mammalian nociceptors, show peripheral sensitization following nociceptive activation. This sensitization and the profound activity-dependent potentiation of LE synapses indicate that LE cell contributions to defensive reflexes should be largest during and after intense activation of the LE cells by noxious stimulation (with the LE cell plasticity contributing to long-lasting memory of peripheral injury). The LE sensory neurons offer special opportunities for direct tests of this and other hypotheses about specific mnemonic functions of fundamental mechanisms of neural plasticity.  相似文献   

18.
Studies of the influence of neurotoxin 6-hydroxydopamine selectively destroying the catecholamine terminals on long-term sensitization, and the role of dopamine in manifestation of characteristics of a membrane of identified neurons during elaboration of plasticity, were fulfilled. Injection of saline was used as the control. It is shown that preliminary injection of 6-hydroxydopamine reduces duration of long-term sensitization, but does not block it completely. It was shown that injection of 6-hydroxydopamine prevents diminishing of membrane and threshold potentials in withdrawal interneurons during formation of long-term sensitization. The experiments demonstrate that shift of electrical characteristics of withdrawal interneurons caused by injection of neurotoxin 6-hydroxydopamine to both naive snails and sensitized snails, statys during at least 10 days.  相似文献   

19.
20.
The pteropod mollusc, Clione limacina, swims by alternate dorsal–ventral flapping movements of its wing-like parapodia. The basic swim rhythm is produced by a network of pedal swim interneurons that comprise a swim central pattern generator (CPG). Serotonergic modulation of both intrinsic cellular properties of the swim interneurons and network properties contribute to swim acceleration, the latter including recruitment of type 12 interneurons into the CPG. Here we address the role of the type 12 interneurons in swim acceleration. A single type 12 interneuron is found in each of the pleural ganglia, which contributes to fast swimming by exciting the dorsal swim interneurons while simultaneously inhibiting the ventral swim interneurons. Each type 12 interneuron sends a single process through the pleural–pedal connective that branches in both ipsilateral and contralateral pedal ganglia. This anatomical arrangement allowed us to manipulate the influence of the type 12 interneurons on the swim circuitry by cutting the pleural–pedal connective followed by a “culture” period of 48 h. The mean swim frequency of cut preparations was reduced by 19% when compared to the swim frequency of uncut preparations when stimulated with 10−6 M serotonin; however, this decrease was not statistically significant. Additional evidence suggests that the type 12 interneurons may produce a short-term, immediate effect on swim acceleration while slower, modulatory inputs are taking shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号