首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.  相似文献   

2.
The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.  相似文献   

3.
Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (IN) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+IN) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After IN administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (IV) drug injection is employed, FUS was also applied after IV injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+IN enhanced drug delivery within the targeted region compared with that achieved by IN only. Despite the fact that the IN route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+IN was not significantly different from that of FUS+IV. As a new drug delivery platform, the FUS+IN technique is potentially useful for treating CNS diseases.  相似文献   

4.
Temozolomide (TMZ) is a widely used chemotherapeutic agent for malignant glioma. β-Elemene has been reported to have the ability of passing through the blood-brain barrier and reverse multidrug resistance. In the present study, transport of drugs through the in vitro blood-brain barrier (BBB) model also suggested that β-elemene can assist in TMZ transport to the brain. Plasma and brain pharmacokinetics demonstrated that when β-elemene is used in combination with TMZ, the metabolic rate of TMZ in plasma is slowed, and mean residence time (MRT) in brain is prolonged. The brain tissue distribution at 1 h indicated that the combination of TMZ and β-elemene promotes the distribution of β-elemene in the brain but slightly reduces the distribution of TMZ in the brain. Furthermore the antitumor effect and toxicity in vivo were also investigated. The combination of β-elemene and TMZ was well tolerated and significantly inhibited tumor growth in glioma xenografts. In summary, the present study indicates a synergistic antitumor effect of β-elemene and TMZ in glioma.  相似文献   

5.
Chemotherapy on gliomas is not satisfactorily efficient because the presence of blood‐brain barriers (BBB) leads to inadequate exposure of tumor cells to administered drugs. In order to facilitate chemotherapeutics to penetrate BBB and increase the treatment efficacy of gliomas, electromagnetic pulse (EMP) was applied and the 1‐(2‐Chlorethyl)‐cyclohexyl‐nitrosourea (CCNU) lomustine concentration in tumor tissue, tumor size, tumor apoptosis, and side effects were measured in glioma‐bearing rat model. The results showed that EMP exposure could enhance the delivery of CCNU to tumor tissue, facilitate tumor apoptosis, and inhibit tumor growth without obvious side effects. The data indicated that EMP‐induced BBB disruption could enhance delivery of CCNU to glioblastoma multiforme and increase treatment efficacy in glioma‐bearing rats. Bioelectromagnetics. 39:60–67, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
The blood–brain barrier (BBB) is a specialized system of capillary endothelial cells that protects the brain from harmful substances in the blood stream, while supplying the brain with the required nutrients for proper function. The BBB controls transport through both tight junctions and metabolic barriers and is often a rate-limiting factor in determining permeation of therapeutic drugs into the brain. It is a significant obstacle for delivery of both small molecules and macromolecular agents. Although many drugs could be potentially used to treat brain disease, there has been no method that allows non-invasive-targeted delivery through the BBB. Recently, promising studies indicate that ultrasound can be used to locally deliver a drug or gene to a specific region of interest in the brain. If microbubbles are combined with ultrasound exposure, the effects of ultrasound can be focused upon the vasculature to reduce the acoustic intensity needed to produce BBB opening. Several avenues of transcapillary passage after ultrasound sonication have been identified including transcytosis, passage through endothelial cell cytoplasmic openings, opening of tight junctions and free passage through injured endothelium. This article reviews the topic of transient disruption of the BBB with ultrasound and microbubbles and addresses related safety issues. It also discusses possible roles of the BBB in brain disease and potential interactions with ultrasound and microbubbles in such disease states.  相似文献   

7.
The use of focused ultrasound (FUS) with microbubbles has been proven to induce transient blood–brain barrier opening (BBB-opening). However, FUS-induced inertial cavitation of microbubbles can also result in erythrocyte extravasations. Here we investigated whether induction of submicron bubbles to oscillate at their resonant frequency would reduce inertial cavitation during BBB-opening and thereby eliminate erythrocyte extravasations in a rat brain model. FUS was delivered with acoustic pressures of 0.1–4.5 MPa using either in-house manufactured submicron bubbles or standard SonoVue microbubbles. Wideband and subharmonic emissions from bubbles were used to quantify inertial and stable cavitation, respectively. Erythrocyte extravasations were evaluated by in vivo post-treatment magnetic resonance susceptibility-weighted imaging, and finally by histological confirmation. We found that excitation of submicron bubbles with resonant frequency-matched FUS (10 MHz) can greatly limit inertial cavitation while enhancing stable cavitation. The BBB-opening was mainly caused by stable cavitation, whereas the erythrocyte extravasation was closely correlated with inertial cavitation. Our technique allows extensive reduction of inertial cavitation to induce safe BBB-opening. Furthermore, the safety issue of BBB-opening was not compromised by prolonging FUS exposure time, and the local drug concentrations in the brain tissues were significantly improved to 60 times (BCNU; 18.6 µg versus 0.3 µg) by using chemotherapeutic agent-loaded submicron bubbles with FUS. This study provides important information towards the goal of successfully translating FUS brain drug delivery into clinical use.  相似文献   

8.
ABSTRACT

Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart “all-in-one” nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors.  相似文献   

9.

Background  

The Blood Brain Barrier (BBB) maintains the homeostasis of central nervous system by preventing the free passage of macromolecules from the systemic circulation into the brain. This normal physiological function of the BBB presents a challenge for delivery of therapeutic compounds into the brain. Recent studies have shown that the application of focused ultrasound together with ultrasound contrast agent (microbubbles) temporarily increases the permeability of the BBB. This effect is associated with breakdown of tight junctions, the structures that regulate the paracellular permeability of the endothelial cell layer. The influence of this ultrasound effect on the activation of intracellular signaling proteins is currently not well understood. Therefore, the aim of this study was to investigate the activation of cell survival signaling molecules in response to ultrasound-mediated BBB opening;  相似文献   

10.
Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500kHz, 200–400 kPa, 4–5μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4–20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of’ visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4–5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.  相似文献   

11.
Although mice are the dominant model system for studying the genetic and molecular underpinnings of neuroscience, functional neuroimaging in mice remains technically challenging. One approach, Activation-Induced Manganese-enhanced MRI (AIM MRI), has been used successfully to map neuronal activity in rodents. In AIM MRI, Mn(2+) acts a calcium analog and accumulates in depolarized neurons. Because Mn(2+) shortens the T1 tissue property, regions of elevated neuronal activity will enhance in MRI. Furthermore, Mn(2+) clears slowly from the activated regions; therefore, stimulation can be performed outside the magnet prior to imaging, enabling greater experimental flexibility. However, because Mn(2+) does not readily cross the blood-brain barrier (BBB), the need to open the BBB has limited the use of AIM MRI, especially in mice. One tool for opening the BBB is ultrasound. Though potentially damaging, if ultrasound is administered in combination with gas-filled microbubbles (i.e., ultrasound contrast agents), the acoustic pressure required for BBB opening is considerably lower. This combination of ultrasound and microbubbles can be used to reliably open the BBB without causing tissue damage. Here, a method is presented for performing AIM MRI by using microbubbles and ultrasound to open the BBB. After an intravenous injection of perflutren microbubbles, an unfocused pulsed ultrasound beam is applied to the shaved mouse head for 3 minutes. For simplicity, we refer to this technique of BBB Opening with Microbubbles and UltraSound as BOMUS. Using BOMUS to open the BBB throughout both cerebral hemispheres, manganese is administered to the whole mouse brain. After experimental stimulation of the lightly sedated mice, AIM MRI is used to map the neuronal response. To demonstrate this approach, herein BOMUS and AIM MRI are used to map unilateral mechanical stimulation of the vibrissae in lightly sedated mice. Because BOMUS can open the BBB throughout both hemispheres, the unstimulated side of the brain is used to control for nonspecific background stimulation. The resultant 3D activation map agrees well with published representations of the vibrissae regions of the barrel field cortex. The ultrasonic opening of the BBB is fast, noninvasive, and reversible; and thus this approach is suitable for high-throughput and/or longitudinal studies in awake mice.  相似文献   

12.
Malignant glioma is the most common primary brain tumor. Malignant melanoma is the most malignant of skin tumor. The two malignancies are poorly responsive to conventional treatment regimens such as chemotherapy. Temozolomide (TMZ) is a DNA-alkylating agent used for the treatment of glioma, astrocytoma, and melanoma. Resistance to alkylating agents such as TMZ correlates with increased expression of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Several studies in animal models have demonstrated that decreasing MGMT level with gene therapy could overcome TMZ resistance and enhance tumor cell death. In the present review, we provide an overview of recent advances in this field.  相似文献   

13.
Delivery of pharmaceutical agents across a blood–brain barrier (BBB) is a challenge for brain cancer therapy. In this study, an in vitro BBB model was utilized to study the delivery of oligonucleotides across brain endothelial cells targeting to glioma cells in a Transwell? setup. A series of novel peptides were synthesized by covalent conjugation of cell-penetrating peptides with targeting peptides for delivery of gene-based therapeutics. These peptides were screened for passage across the Transwell? and we found the most efficient peptide PepFect32 from originating PepFect 14 coupled with the targeting peptide angiopep-2. PepFect32/pDNA nanocomplexes exhibited high transcytosis across the BBB in vitro model and the highest transfection efficiency to glioma cells. In conclusion, PepFect32 revealed the most efficient peptide-based vector for pDNA delivery across in vitro BBB model.  相似文献   

14.
Glioblastoma (GBM) is an incurable cancer, with survival rates of just 14-16 months after diagnosis.1 Functional genomics have identified numerous genetic events involved in GBM development. One of these, the deregulation of microRNAs (miRNAs), has been attracting increasing attention due to the multiple biologic processes that individual miRNAs influence. Our group has been studying the role of miR-182 in GBM progression, therapy resistance, and its potential as GBM therapeutic. Oncogenomic analyses revealed that miR-182 is the only miRNA, out of 470 miRNAs profiled by The Cancer Genome Atlas (TCGA) program, which is associated with favorable patient prognosis, neuro-developmental context, temozolomide (TMZ) susceptibility, and most significantly expressed in the least aggressive oligoneural subclass of GBM. miR-182 sensitized glioma cells to TMZ-induced apoptosis, promoted glioma initiating cell (GIC) differentiation, and reduced tumor cell proliferation via knockdown of Bcl2L12, c-Met and HIF2A.2 To deliver miR-182 to intracranial gliomas, we have characterized Spherical Nucleic Acids covalently functionalized with miR-182 sequences (182-SNAs). Upon systemic administration, 182-SNAs crossed the blood-brain/blood-tumor barrier (BBB/BTB), reduced tumor burden, and increased animal subject survival.2-4 Thus, miR-182-based SNAs represent a tool for systemic delivery of miRNAs and a novel approach for the precision treatment of malignant brain cancers.  相似文献   

15.
Focused ultrasound (FUS) disruption of the blood-brain barrier (BBB) is an increasingly investigated technique for circumventing the BBB1-5. The BBB is a significant obstacle to pharmaceutical treatments of brain disorders as it limits the passage of molecules from the vasculature into the brain tissue to molecules less than approximately 500 Da in size6. FUS induced BBB disruption (BBBD) is temporary and reversible4 and has an advantage over chemical means of inducing BBBD by being highly localized. FUS induced BBBD provides a means for investigating the effects of a wide range of therapeutic agents on the brain, which would not otherwise be deliverable to the tissue in sufficient concentration. While a wide range of ultrasound parameters have proven successful at disrupting the BBB2,5,7, there are several critical steps in the experimental procedure to ensure successful disruption with accurate targeting. This protocol outlines how to achieve MRI-guided FUS induced BBBD in a rat model, with a focus on the critical animal preparation and microbubble handling steps of the experiment.  相似文献   

16.
Temozolomide (TMZ) is a cytostatic drug used in treatment of patients with malignant gliomas and melanomas. The development of innovative formulations for delivery of TMZ into target cells in order to reduce its systemic toxicity and gain prolonged effect is a topical problem of modern biotechnology and pharmacology. The article presents experimental data on development of the TMZ polymer-based formulation. The TMZ formulation presents nanoparticles with average size of 300 nm exhibiting high in vitro cytotoxic activity against melanoma and glioma cells (cell lines C6, U377MG, B16, and Mel-10). Melanoma (B16 cell line) bearing mice (C57Bl/61) treated by TMZ polymer nanoparticles revealed inhibition of tumor growth and increase of the animal lifespan. Also, loading of TMZ into the polymer particles was shown to decrease acute toxicity of the drug compared to the intact drug.  相似文献   

17.
Recombinant adeno-associated viral (rAAV) vectors are potentially powerful tools for gene therapy of CNS diseases, but their penetration into brain parenchyma is severely limited by the blood-brain barrier (BBB) and current delivery relies on invasive stereotactic injection. Here we evaluate the local, targeted delivery of rAAV vectors into the brains of mice by noninvasive, reversible, microbubble-facilitated focused ultrasound (FUS), resulting in BBB opening that can be monitored and controlled by magnetic resonance imaging (MRI). Using this method, we found that IV-administered AAV2-GFP (green fluorescence protein) with a low viral vector titer (1×109 vg/g) can successfully penetrate the BBB-opened brain regions to express GFP. We show that MRI monitoring of BBB-opening could serve as an indicator of the scale and distribution of AAV transduction. Transduction peaked at 3 weeks and neurons and astrocytes were affected. This novel, noninvasive delivery approach could significantly broaden the application of AAV-viral-vector-based genes for treatment of CNS diseases.  相似文献   

18.
胶质母细胞瘤作为胶质瘤中恶性程度最高的原发性脑部肿瘤,具有治愈率低、复发率高、呈浸润性生长等特点,在不使用化疗药物的情况下,患者中位生存期仅为12.1个月。胶质母细胞瘤患者的标准治疗方法以手术切除为主,放化疗为辅,其中替莫唑胺(temozolomide,TMZ)作为一种新型的口服烷化剂,是目前用于胶质瘤化学治疗的一线药物。但经过替莫唑胺治疗后,患者中位生存期仅提高了2个月,主要原因为胶质母细胞瘤可对TMZ产生耐药性。胶质母细胞瘤对TMZ产生的耐药机制主要为DNA修复机制,其包括了O6?甲基鸟嘌呤DNA甲基转移酶(O6?methyl guanine DNA methyltransferase,MGMT)对药物作用位点进行的直接修复、错配修复(mismatch repair,MMR)及碱基切除修复(base excision repair,BER),这些修复机制可修复TMZ引起的DNA损伤,从而降低肿瘤细胞对TMZ敏感性。通过对近年来胶质母细胞瘤的TMZ耐药机制的研究进展进行介绍,旨在为发展新的治疗手段提供理论基础。  相似文献   

19.
Lin CJ  Lee CC  Shih YL  Lin CH  Wang SH  Chen TH  Shih CM 《PloS one》2012,7(6):e38706
Autophagy is a crucial process for cells to maintain homeostasis and survival through degradation of cellular proteins and organelles, including mitochondria and endoplasmic reticula (ER). We previously demonstrated that temozolomide (TMZ), an alkylating agent for brain tumor chemotherapy, induced reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK)-mediated autophagy to protect glioma cells from apoptosis. In this study, we investigated the role of mitochondrial damage and ER stress in TMZ-induced cytotoxicity. Mitochondrial depolarization and mitochondrial permeability transition pore (MPTP) opening were observed as a prelude to TMZ-induced autophagy, and these were followed by the loss of mitochondrial mass. Electron transport chain (ETC) inhibitors, such as rotenone (a complex I inhibitor), sodium azide (a complex IV inhibitor), and oligomycin (a complex V inhibitor), or the MPTP inhibitor, cyclosporine A, decreased mitochondrial damage-mediated autophagy, and therefore increased TMZ-induced apoptosis. TMZ treatment triggered ER stress with increased expression of GADD153 and GRP78 proteins, and deceased pro-caspase 12 protein. ER stress consequently induced autophagy through c-Jun N-terminal kinases (JNK) and Ca(2+) signaling pathways. Combination of TMZ with 4-phenylbutyrate (4-PBA), an ER stress inhibitor, augmented TMZ-induced cytotoxicity by inhibiting autophagy. Taken together, our data indicate that TMZ induced autophagy through mitochondrial damage- and ER stress-dependent mechanisms to protect glioma cells. This study provides evidence that agents targeting mitochondria or ER may be potential anticancer strategies.  相似文献   

20.

Background

Glioblastoma multiforme (GBM), the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ) is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ.

Methodology/Principal Findings

Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ.

Conclusions/Significance

These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号