首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an α-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster–containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.  相似文献   

7.
8.
9.
10.
Mutations in the XPD gene are associated with three complex clinical phenotypes, namely xeroderma pigmentosum (XP), XP in combination with Cockayne syndrome (XP-CS), and trichothiodystrophy (TTD). XP is caused by a deficiency in nucleotide excision repair (NER) that results in a high risk of skin cancer. TTD is characterized by severe developmental and neurological defects, with hallmark features of brittle hair and scaly skin, and sometimes has defective NER. We used CHO cells as a system to study how specific mutations alter the dominant/recessive behavior of XPD protein. Previously we identified the T46I and R75W mutations in two highly UV-sensitive hamster cell lines that were reported to have paradoxically high levels of unscheduled DNA synthesis. Here we report that these mutants have greatly reduced XPD helicase activity and fully defective NER in a cell-extract excision assay. We conclude that the unscheduled DNA synthesis seen in these mutants is caused by abortive "repair" that does not contribute to cell survival. These mutations, as well as the K48R canonical helicase-domain mutation, each produced codominant negative phenotypes when overexpressed in wild-type CHO cells. The common XP-specific R683W mutation also behaved in a codominant manner when overexpressed, which is consistent with the idea that this mutation may affect primarily the enzymatic activity of the protein rather than impairing protein interactions, which may underlie TTD. A C-terminal mutation uniquely found in TTD (R722W) was overexpressed but not to levels sufficiently high to rigorously test for a codominant phenotype. Overexpression of mutant XPD alleles may provide a simple means of producing NER deficiency in other cell lines.  相似文献   

11.
12.
13.
DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an α-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster–containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.  相似文献   

14.
15.
16.
17.
18.
The 14th Datta Lecture. TFIIH: from transcription to clinic.   总被引:1,自引:0,他引:1  
J M Egly 《FEBS letters》2001,498(2-3):124-128
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号