首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles.  相似文献   

2.
Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter.  相似文献   

3.
Ali N  Hayat T  Sajid M 《Biorheology》2007,44(2):125-138
This paper presents an analysis of the peristaltic flow of a couple stress fluid in an asymmetric channel. The asymmetric nature of the flow is introduced through the peristaltic waves of different amplitudes and phases on the channel walls. Mathematical modelling corresponding to a two-dimensional flow has been carried out. The flow analysis is presented under long wavelength and low Reynolds number approximations. Closed form solutions for the axial velocity, stream function and the axial pressure gradient are given. Numerical computations have been carried out for the pressure rise per wavelength, friction forces and trapping. It is noted that there is a decrease in the pressure when the couple stress fluid parameter increases. The variation of the couple stress fluid parameter with the size of the trapped bolus is also similar to that of pressure. Furthermore, the friction force on the lower channel wall is greater than that on the upper channel wall.  相似文献   

4.
The differential transform method (DTM) is semi-numerical method which is used to study the steady, laminar buoyancy-driven convection heat transfer of a particulate biofluid suspension in a channel containing a porous material. A two-phase continuum model is used. A set of variables is implemented to reduce the ordinary differential equations for momentum and energy conservation (for both phases) to a dimensionless system. DTM solutions are obtained for the dimensionless system under appropriate boundary conditions. We examine the influence of momentum inverse Stokes number (Skm), Darcy number (Da), Forchheimer number (Fs), particle loading parameter (pL), particle-phase wall slip parameter (Ω) and buoyancy parameter (B) on the fluid-phase velocity (U) and particle-phase velocity (Up). Padé approximants are also employed to achieve satisfaction of boundary conditions. Excellent correlation is obtained between the DTM and numerical quadrature solutions. The results indicate that there is a strong decrease in fluid-phase velocities with increasing Darcian (first-order) drag and the second-order Forchheimer drag, and a weaker reduction in particle-phase velocity field. Fluid and particle-phase velocities are also strongly affected with inverse momentum Stokes number. DTM is shown to be a powerful tool providing engineers with an alternative simulation approach to other traditional methods for multi-phase computational biofluid mechanics. The model finds applications in haemotological separation and biotechnological processing.  相似文献   

5.
The effects of both fluid leakage and wall slip conditions are studied analytically and numerically on the fluctuation rate in the flow inside non-isothermal disturbed thin films supported by soft seals within a fluidic cell. Flow disturbances due to internal pressure pulsations and external squeezing are considered in this work. The main controlling parameters are found to be the dimensionless leakage parameter, softness of the seal, squeezing number, dimensionless slip parameter, the thermal squeezing parameter and the power law index. Accordingly, their influences on the fluctuation rate and heat transfer characteristics inside disturbed thin films are determined and discussed. It is found that an increase in the dimensionless leakage parameter, softness of the seal-upper plate assembly and the wall slip parameter result in more cooling and an increase in the fluctuation level in the flow. However, an increase in the squeezing number and the fluid power index decrease flow fluctuations. Finally, a suggested design to alleviate a number of problems in fluidic cells is presented.  相似文献   

6.
The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters.  相似文献   

7.
Bionic systems frequently feature electromagnetic pumping and offer significant advantages over conventional designs via intelligent bio-inspired properties. Complex wall features observed in nature also provide efficient mechanisms which can be utilized in biomimetic designs. The characteristics of biological fluids are frequently non-Newtonian in nature. In many natural systems super-hydrophobic slip is witnessed. Motivated by these phenomena, in this paper, we discussed a mathematical model for the cilia-generated propulsion of an electrically-conducting viscoelastic physiological fluid in a ciliated channel under the action of magnetic field. The rheological behavior of the fluid is simulated with the Johnson-Segalman constitutive model which allows internal wall slip. The regular or coordinated movement of the ciliated edges (which line the internal walls of the channel) is represented by a metachronal wave motion in the horizontal direction which generates a two-dimensional velocity profile. This mechanism is imposed by a periodic boundary condition which generates propulsion in the channel flow. Under the classical lubrication approximation, the boundary value problem is non-dimensionalized and solved analytically with a perturbation technique. The influence of the geometric, rheological (slip and Weissenberg number) and magnetic parameters on velocity, pressure gradient and the pressure rise (evaluated via the stream function in symbolic software) are presented graphically and interpreted at length.  相似文献   

8.
This paper deals with the pulsatile blood flow in the lung alveolar sheets by idealizing each of them as a channel covered by porous media. As the blood flow in the lung is of low Reynolds number, a creeping flow is assumed in the channel. The analytical and numerical results for the velocity and pressure distribution in the porous medium are presented. The effect of an imposed slip condition is also studied. Comparisons with the corresponding results for the steady-state case are made at the end.  相似文献   

9.
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.  相似文献   

10.
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.  相似文献   

11.
In this paper, a simple mathematical model depicting blood flow in the deforming porous channel is developed with an emphasis on the permeability property of the blood vessel and slip boundary based on Beavers and Joseph slip condition. In this study, the blood is represented by a micropolar fluid. With such an ideal model, the governing equations are reduced to ordinary ones by introducing suitable similar transformations. Homotopy analysis method is employed to obtain the expressions for velocity and microrotation fields. Graphs are sketched for some values of parameters such as slip coefficient and expansion ratio, and the associated dynamic characteristics are analysed in detail.  相似文献   

12.
Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-slip wall boundary conditions. A well-tested finite difference method based on an iterative scheme is employed for the solution of the boundary value problem. The important phenomena of pumping and trapping associated with the peristaltic motion are investigated for various values of rheological parameters of Carreau fluid and curvature of the channel. An increase in Weissenberg number is found to generate a small eddy in the vicinity of the lower wall of the channel, which is enhanced with further increase in Weissenberg number. For shear-thinning bio-fluids (power-law rheological index, n < 1) greater Weissenberg number displaces the maximum velocity toward the upper wall. For shear-thickening bio-fluids, the velocity amplitude is enhanced markedly with increasing Weissenberg number.  相似文献   

13.
Since the first Hodgkin and Huxley ion channel model was described in the 1950s, there has been an explosion in mathematical models to describe ion channel function. As experimental data has become richer, models have concomitantly been improved to better represent ion channel kinetic processes, although these improvements have generally resulted in more model complexity and an increase in the number of parameters necessary to populate the models. Models have also been developed to explicitly model drug interactions with ion channels. Recent models of drug-channel interactions account for the discrete kinetics of drug interaction with distinct ion channel state conformations, as it has become clear that such interactions underlie complex emergent kinetics such as use-dependent block. Here, we describe an approach for developing a model for ion channel drug interactions. The method describes the process of extracting rate constants from experimental electrophysiological function data to use as initial conditions for the model parameters. We then describe implementation of a parameter optimization method to refine the model rate constants describing ion channel drug kinetics. The algorithm takes advantage of readily available parallel computing tools to speed up the optimization. Finally, we describe some potential applications of the platform including the potential for gaining fundamental mechanistic insights into ion channel function and applications to in silico drug screening and development.  相似文献   

14.
The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.  相似文献   

15.
Various supports and bio-reactors have been proposed. Packed bed reactors with polymer material in granular shape are most often employed in both laboratory and industry. But they have a disadvantage related to an increase in pressure drop. We already developed filter paper composed of short cut pieces of superfine filaments (SFF). It shows high performance, but its hydrodynamic resistance increases when substrate solution passes through it. A new type of enzyme reactor equipped with knitted SFF has been proposed. In this reactor, substrate does not pass through the support but flows along the thin channel and parallel to the support. Therefore, it is able to maintain flow rate constant during a considerable period. The productivity of the reactor fairly increases by reducing the thickness of the channel because linear velocity increases with the reduction of the thickness and that contributes to the decrease in mass transfer resistance.  相似文献   

16.
This investigation deals with the peristaltic flow of generalised Oldroyd-B fluids (with the fractional model) through a cylindrical tube under the influence of wall slip conditions. The analysis is carried out under the assumptions of long wavelength and low Reynolds number. Analytical approximate solutions are obtained by using the highly versatile and rigorous semi-numerical procedure known as the homotopy analysis method. It is assumed that the cross section of the tube varies sinusoidally along the length of the tube. The effects of the dominant hydromechanical parameters, i.e. fractional parameters, material constants, slip parameter, time and amplitude on the pressure difference across one wavelength, are studied. Graphical plots reveal that the influence of both fractional parameters on pressure is opposite to each other. Interesting responses to a variation in the constants are obtained. Pressure is shown to be reduced by increasing the slip parameter. Furthermore, the pressure in the case of fractional models (fractional Oldroyd-B model and fractional Maxwell model) of viscoelastic fluids is considerably more substantial than that in the corresponding classical viscoelastic models (Oldroyd-B and Maxwell models). Applications of the study arise in biophysical food processing, embryology and gastro-fluid dynamics.  相似文献   

17.

We explore the physical influence of magnetic field on double-diffusive convection in complex biomimetic (peristaltic) propulsion of nanofluid through a two-dimensional divergent channel. Additionally, porosity effects along with rheological properties of the fluid are also retained in the analysis. The mathematical model is developed by equations of continuity, momentum, energy, and mass concentration. First, scaling analysis is introduced to simplify the rheological equations in the wave frame of reference and then get the final form of equations after applying the low Reynolds number and lubrication approach. The obtained equations are solved analytically by using integration method. Physical interpretation of velocity, pressure gradient, pumping phenomena, trapping phenomena, heat, and mass transfer mechanisms are discussed in detail under magnetic and porous environment. The magnitude of velocity profile is reduced by increasing Grashof parameter. The bolus circulations disappeared from trapping phenomena for larger strength of magnetic and porosity medium. The magnitude of temperature profile and mass concentration are increasing by enhancing the Brownian motion parameter. This study can be productive in manufacturing non-uniform and divergent shapes of micro-lab-chip devices for thermal engineering, industrial, and medical technologies.

  相似文献   

18.
In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.  相似文献   

19.
J C Misra  B K Kar 《Biorheology》1989,26(1):23-35
Taking into consideration the slip velocity at the wall of a blood vessel, a mathematical model is developed in the paper for the study of blood flow through a mammalian blood vessel in the presence of a stenosis. By employing the momentum integral technique, analytical expressions for the velocity profile, pressure gradient and skin-friction are derived. The condition for an adverse pressure gradient is also deduced. It is observed that the slip velocity bears the potential to influence the velocity distribution of blood to a remarkable extent and to reduce considerably the pressure-gradient as well as the skin-friction.  相似文献   

20.
The bed expansion characteristics of a fluidized bed containing bacterial granules have been studied. These biogranules were obtained from an anaerobic hybrid reactor, which uses biogranules (without carrier particle) in fluidized condition. The settling velocity study of biogranules has shown that the drag coefficient of biogranule is greater than that of the rigid particle at the same Reynolds number. A new correlation based on this finding has been developed. The bed expansion study has demonstrated that a linear relationship exists between the natural logarithm of bed porosity and the natural logarithm of upflow superficial liquid velocity for the bed containing either a particular fraction of biogranule size or biogranules with wide size distribution. For a fluidized bed having a particular granule size, the bed porosity, and liquid superficial velocity could be related by the classic equation suggested by Richardson and Zaki (1954). The characteristic parameter of this correlation, the slope of the line n, has been related with Reynolds number. The intercept of the line gave a smaller value than the unhindered settling velocity of the particle. For fluidized bed having wide size distribution, the characteristic parameter n could not be related to Reynolds number. But the correlation suggested for single biogranule size has been found to predict n value with an average error of 2.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号