首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (Δψm) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain Δψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis.  相似文献   

2.
Zhao H  Young WY  Yan Q  Li R  Cao J  Wang Q  Li X  Peters JL  Han D  Guan MX 《Nucleic acids research》2005,33(3):1132-1139
In this study, we report the biochemical characterization of the deafness-associated mitochondrial 12S rRNA C1494T mutation using 27 cybrid cell lines constructed by transferring mitochondria from 9 lymphoblastoid cell lines derived from a Chinese family into human mitochondrial DNA (mtDNA)-less (ρ°) cells. Six cybrids derived from two asymptomatic members, and nine cybrids derived from three symptomatic members of the Chinese family carrying the C1494T mutation exhibited ~38 and 43% decrease in the rate of mitochondrial protein labeling, respectively, compared with twelve cybrids derived from four Chinese control individuals. These defects are apparently a primary contributor to significant reductions in the rate of overall respiratory capacity or the rate of malate/glutamate promoted respiration, or succinate/G3P-promoted respiration, or TMPD/ascorbate-promoted respiration in mutant cybrid cell lines derived from either symptomatic or asymptomatic individuals. Furthermore, the very significant/nearly identical increase in the ratio of doubling times in DMDM medium in the presence/absence of high concentration of paromomycin was observed in symptomatic or asymptomatic cybrid cell lines carrying the C1494T mutation as compared with the average rate in control cell lines. These observations provide the direct biochemical evidences that the C1494T mutation is a pathogenic mtDNA mutation associated with aminoglycoside-induced and non-syndromic hearing loss. In addition, these data provide the first biochemical evidence that nuclear background plays a critical role in the phenotypic manifestation of non-syndromic hearing loss and aminoglycoside toxicity associated with the C1494T mutation.  相似文献   

3.
In this report, we investigated the molecular genetic mechanism underlying the deafness-associated mitochondrial tRNAHis 12201T>C mutation. The destabilization of a highly conserved base-pairing (5A-68U) by the m.12201T>C mutation alters structure and function of tRNAHis. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mtDNA-less (ρo) cells, we showed ∼70% decrease in the steady-state level of tRNAHis in mutant cybrids, compared with control cybrids. The mutation changed the conformation of tRNAHis, as suggested by slower electrophoretic mobility of mutated tRNA with respect to the wild-type molecule. However, ∼60% increase in aminoacylated level of tRNAHis was observed in mutant cells. The failure in tRNAHis metabolism was responsible for the variable reductions in seven mtDNA-encoded polypeptides in mutant cells, ranging from 37 to 81%, with the average of ∼46% reduction, as compared with those of control cells. The impaired mitochondrial translation caused defects in respiratory capacity in mutant cells. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cells. The data provide the evidence for a mitochondrial tRNAHis mutation leading to deafness.  相似文献   

4.
In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat-shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity.  相似文献   

5.
We report here the clinical, genetic, and molecular characterization of a large Han Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Two and 13 of 66 matrilineal relatives suffered from aminoglycoside-induced and nonsyndromic hearing loss, respectively. These matrilineal relatives exhibited a wide range of severity of hearing loss, varying from profound to normal hearing. In the absence of aminoglycosides, the age-at-onset of hearing impairment in these matrilineal relatives ranged from 13 to 50years. Furthermore, these affected matrilineal relatives shared some common features: bilateral hearing loss of high frequencies and symmetries. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified the homoplasmic 12S rRNA C1494T mutation and other 34 variants belonging to Eastern Asian haplogroup F1. Of these, the variant T5628C occurs at an extremely conserved nucleotide (A31) of tRNA(Ala). This variant converted a very conservative A-U to a G-U base-pairing at AC-stem of this tRNA. The disruption of this base-pairing in tRNAs by mtDNA mutations has been associated with several clinical abnormalities. The alteration of structure of the tRNA(Ala) by the T5628C mutation may lead to a failure in tRNA metabolism and lead to impairment of mitochondrial translation, thereby worsening mitochondrial dysfunctions, caused by the C1494T mutation. Therefore, this mtDNA mutation may influence the phenotypic manifestation of the 12S rRNA C1494T mutation in this Chinese pedigree.  相似文献   

6.
Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.  相似文献   

7.
线粒体DNA突变是引起听力损伤的重要原因之一. 其中,线粒体12S rRNA基因突变与综合征型耳聋和非综合征型耳聋相关. 导致综合征型耳聋的线粒体DNA突变多为异质性,然 而对于非综合征型耳聋突变则多以同质性或高度异质性存在,说明这种分子致病性需要较高的阈值. 位于12S rRNA解码区的A1555G和C1494T突变是造成氨基糖甙类抗生素耳毒性和 非综合征型耳聋常见的分子机制. 这些突变可能造成12S rRNA二级结构的改变,影响线粒体蛋白质的合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍导致耳聋. 但是多数 基因突变的致病机制还仅处于推测阶段. 其它修饰因子如氨基糖甙类抗生素、线粒体单体型、核修饰基因参与了线粒体12S rRNA基因A1555G和C1494T突变相关的耳聋表型表达.  相似文献   

8.
Guan MX 《Mitochondrion》2011,11(2):237-245
The mitochondrial 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic 1555A>G and 1494C>T mutations at the highly conserved decoding region of the 12S rRNA have been associated with hearing loss worldwide. In particular, these two mutations account for a significant number of cases of aminoglycoside ototoxicity. The 1555A>G or 1494C>T mutation is expected to form a novel 1494C-G1555 or 1494U-A1555 base-pair at the highly conserved A-site of 12S rRNA. These transitions make the human mitochondrial ribosomes more bacteria-like and alter binding sites for aminoglycosides. As a result, the exposure to aminoglycosides can induce or worsen hearing loss in individuals carrying one of these mutations. Biochemical characterization demonstrated an impairment of mitochondrial protein synthesis and subsequent defects in respiration in cells carrying the A1555G or 1494C>T mutation. Furthermore, a wide range of severity, age-at-onset and penetrance of hearing loss was observed within and among families carrying these mutations. Nuclear modifier genes, mitochondrial haplotypes and aminoglycosides should modulate the phenotypic manifestation of the 12S rRNA 1555A>G and 1494C>T mutations. Therefore, these data provide valuable information and technology: (1) to predict which individuals are at risk for ototoxicity; (2) to improve the safety of aminoglycoside antibiotic therapy; and (3) eventually to decrease the incidence of hearing loss.  相似文献   

9.
Mutations in mitochondrial DNA (mtDNA) are associated with sensorineural hearing loss. In this study, we traced the origin of the 12S rRNA C1494T mutation through analysis of the clinical, genetic, and molecular characteristics of 13 Han Chinese pedigrees with aminoglycoside-induced and non-syndromic bilateral hearing loss that were selected by C1494T screening in 3133 subjects with non-syndromic hearing impairment from 27 regions of China (13/3133). Clinical evaluation revealed the variable phenotypes of hearing impairment including severity, age-of-onset, and audiometric configuration in these subjects. Through the whole mitochondrial genome DNA sequence analysis, we identified two evolutionarily conservative variants in protein-coding genes: tRNAAla T 5628C and tRNATyr A5836G mutations. However, the pedigrees with these mutations did not have a higher or lower penetrance of deafness than in other pedigrees. These results suggested that both T 5628C and A5836G mutations might not significantly modify the manifestation of the C1494T mutation. Sequencing analysis of the whole mitochondrial genome of the probands showed that 13 pedigrees from seven different provinces were classified into 10 haplogroups by the distinct sets of mtDNA polymorphisms, including haplogroups A, B, D, D4, D4b2, F1, M, M7c, N9a1, and H2b. This result suggested that the C1494T mutation occurred sporadically with multi-origins through the evolution of the mtDNA in China, and these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the C1494T mutation in these Chinese families with different penetrance of hearing loss. In addition, the lack of a significant mutation in the GJB2 gene ruled out the possible involvement of GJB2 in the phenotypic expression of the C1494T mutation in those affected subjects. Therefore, the aminoglycosides is solo well-established factor to contribute to the deafness manifestation of the C1494T mutation, and prevention by avoiding the administration of aminoglycosides in individuals carrying C1494T mutation is the most effective way to protect their vulnerability to deafness.  相似文献   

10.
We report here the characterization of a large Chinese family with maternally transmitted aminoglycoside-induced and nonsyndromic deafness. In the absence of aminoglycosides, some matrilineal relatives in this family exhibited late-onset/progressive deafness, with a wide range of severity and age at onset. Notably, the average age at onset of deafness has changed from 55 years (generation II) to 10 years (generation IV). Clinical data reveal that the administration of aminoglycosides can induce or worsen deafness in matrilineal relatives. The age at the time of drug administration appears to be correlated with the severity of hearing loss experienced by affected individuals. Sequence analysis of mitochondrial DNA in this pedigree identified a homoplasmic C-to-T transition at position 1494 (C1494T) in the 12S rRNA gene. The C1494T mutation is expected to form a novel U1494-1555A base pair, which is in the same position as the C1494-1555G pair created by the deafness-associated A1555G mutation, at the highly conserved A site of 12S rRNA. Exposure to a high concentration of paromomycin or neomycin caused a variable but significant average increase in doubling time in lymphoblastoid cell lines derived from four symptomatic and two asymptomatic individuals in this family carrying the C1494T mutation when compared to four control cell lines. Furthermore, a significant decrease in the rate of total oxygen consumption was observed in the mutant cell lines. Thus, our data strongly support the idea that the A site of mitochondrial 12S rRNA is the primary target for aminoglycoside-induced deafness. These results also strongly suggest that the nuclear background plays a role in the aminoglycoside ototoxicity and in the development of the deafness phenotype associated with the C1494T mutation in the mitochondrial 12S rRNA gene.  相似文献   

11.
We report here the biochemical characterization of the deafness-associated mitochondrial tRNASer(UCN) T7511C mutation, in conjunction with homoplasmic ND1 T3308C and tRNAAla T5655C mutations using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from an African family into human mtDNA-less (ρ°) cells. Three cybrids derived from an affected matrilineal relative carrying the homoplasmic T7511C mutation, exhibited ~75% decrease in the tRNASer(UCN) level, compared with three control cybrids. This amount of reduction in the tRNASer(UCN) level is below a proposed threshold to support a normal rate of mitochondrial protein synthesis in lymphoblastoid cell lines. This defect is likely a primary contributor to ~52% reduction in the rate of mitochondrial protein synthesis and marked defects in respiration and growth properties in galactose-containing medium. Interestingly, the T5655C mutation produces ~50% reduction in the tRNAAla level in mutant cells. Strikingly, the T3308C mutation causes a significant decrease both in the amount of ND1 mRNA and co-transcribed tRNALeu(UUR) in mutant cells. Thus, mitochondrial dysfunctions caused by the T5655C and T3308C mutations may modulate the phenotypic manifestation of the T7511C mutation. These observations imply that a combination of the T7511C mutation with two mtDNA mutations accounts for the high penetrance of deafness in this family.  相似文献   

12.
Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.  相似文献   

13.
We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family.  相似文献   

14.
Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL.  相似文献   

15.
16.
Mitochondrial tRNA 3’-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3’-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber’s hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3’-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3’-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3’-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3’-end metabolism deficiency.  相似文献   

17.
Chen J  Yang L  Yang A  Zhu Y  Zhao J  Sun D  Tao Z  Tang X  Wang J  Wang X  Tsushima A  Lan J  Li W  Wu F  Yuan Q  Ji J  Feng J  Wu C  Liao Z  Li Z  Greinwald JH  Lu J  Guan MX 《Gene》2007,401(1-2):4-11
We report here the clinical, genetic and molecular characterization of three Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 28%, 20%, and 15%, with an average of 21%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 21%, 13% and 8%, with an average of 14%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T mutation, in addition to distinct sets of mtDNA polymorphism belonging to Eastern Asian haplogroups F1a1, F1a1 and D5a2, respectively. This suggested that the C1494T mutation occurred sporadically and multiplied through evolution of the mtDNA. The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggests that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the C1494T mutation in those Chinese families. In addition, the lack of significant mutation in the GJB2 gene ruled out the possible involvement of GJB2 in the phenotypic expression of the C1494T mutation in those affected subjects. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.  相似文献   

18.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here a systematic mutational screening of the mitochondrial 12S rRNA gene in 128 Chinese pediatric subjects with sporadic aminoglycoside-induced and non-syndromic hearing loss. We show that aminoglycoside ototoxicity accounts for 48% of cases of hearing loss in this Chinese pediatric population. Of the known deafness-associated mutations in this gene, the incidence of the A1555G mutation is ~13% and ~2.9% in this Chinese pediatric population with aminoglycoside-induced and non-syndromic hearing loss, respectively. Furthermore, mutations at position 961 in the 12S rRNA gene account for ~1.7% and 4.4% of cases of aminoglycoside-induced and non-syndromic hearing loss in this Chinese clinical population, respectively. The T1095C mutation has been identified in one maternally inherited family with aminoglycoside-induced and non-syndromic hearing loss. However, the C1494T mutation was not detected in this clinical population. In addition, three variants, A827G, T1005C and A1116G, in the 12S rRNA gene, localized at highly conserved sites, may play a role in the pathogenesis of aminoglycoside ototoxicity. These data strongly suggest that the mitochondrial 12S rRNA is a hot-spot for deafness-associated mutations in the Chinese population.Z. Li and R. Li contributed equally to this work.  相似文献   

19.
Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome.  相似文献   

20.
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNASer(UCN) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号