共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Daniel Bendor 《PLoS computational biology》2015,11(4)
In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. 相似文献
7.
Astrid Veronika Rauch Lena ter Horst Victoria Gabriele Paul Jochen Bauer Udo Dannlowski Carsten Konrad Patricia Ohrmann Harald Kugel Boris Egloff Volker Arolt Thomas Suslow 《PloS one》2014,9(12)
Background
Coping plays an important role for emotion regulation in threatening situations. The model of coping modes designates repression and sensitization as two independent coping styles. Repression consists of strategies that shield the individual from arousal. Sensitization indicates increased analysis of the environment in order to reduce uncertainty. According to the discontinuity hypothesis, repressors are sensitive to threat in the early stages of information processing. While repressors do not exhibit memory disturbances early on, they manifest weak memory for these stimuli later. This study investigates the discontinuity hypothesis using functional magnetic resonance imaging (fMRI).Methods
Healthy volunteers (20 repressors and 20 sensitizers) were selected from a sample of 150 students on the basis of the Mainz Coping Inventory. During the fMRI experiment, subjects evaluated and memorized emotional and neutral faces. Subjects performed two sessions of face recognition: immediately after the fMRI session and three days later.Results
Repressors exhibited greater activation of frontal, parietal and temporal areas during encoding of angry faces compared to sensitizers. There were no differences in recognition of facial emotions between groups neither immediately after exposure nor after three days.Conclusions
The fMRI findings suggest that repressors manifest an enhanced neural processing of directly threatening facial expression which confirms the assumption of hyper-responsivity to threatening information in repression in an early processing stage. A discrepancy was observed between high neural activation in encoding-relevant brain areas in response to angry faces in repressors and no advantage in subsequent memory for these faces compared to sensitizers. 相似文献8.
Background
Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control of cortical oculomotor areas on the brainstem saccade generation circuitry.Methodology/Principal Findings
In the present paper, we directly tested this assumption by using single pulse transcranial magnetic stimulation (TMS) to transiently disrupt neuronal activity in the frontal eye fields (FEF) and supplementary eye fields (SEF) in adults performing a gap saccade task. The results showed that the incidence of multiple saccades was increased for ispiversive but not contraversive directions for the right and left FEF, the left SEF, but not for the right SEF. Moreover, this disruption was most substantial during the ∼50 ms period around the appearance of the peripheral target. A control condition in which the dorsal motor cortex was stimulated demonstrated that this was not due to any non-specific effects of the TMS influencing the spatial distribution of attention.Conclusions/Significance
Taken together, the results are consistent with a direction-dependent role of the FEF and left SEF in delaying the release of saccadic eye movements until they have been fully planned. 相似文献9.
B. A. Harutiunian-Kozak D. K. Khachvankyan G. G. Grigoryan J. A. Kozak A. B. Sharanbekyan 《Neurophysiology》2010,42(3):175-184
We studied changes in the spatial parameters of receptive fields (RFs) of visually sensitive neurons in the associative area
21a of the cat cortex under conditions of presentation of moving visual stimuli. The results of experiments demonstrated that
these parameters are dynamic and depend, from many aspects, on the pattern of the stimulus used for their estimation. Angular
lengths of the horizontal and vertical axes of the RFs measured in the case of movement of the visual stimuli exceeded many
times those determined by presentation of stationary blinking stimuli. As is supposed, a visual stimulus, when moving along
the field of vision, activates a certain number of the neurons synaptically connected with the examined cell and possessing
RFs localized along the movement trajectory. As a result, such integrated activity of the neuronal group can change the excitation
threshold and discharge frequency of the studied neuron. It seems probable that correlated directed activation of the neuronal
groups represents a significant neurophysiological mechanism providing dynamic modifications of the RF parameters of visually
sensitive neurons in the course of processes of visual perception and identification of moving objects within the field of
vision. 相似文献
10.
Vladimir Ermolayev Revaz Nozadze Michael A. Klein Eckhard Flechsig 《Biophysical journal》2009,96(8):3390-3398
The functional imaging of neuronal circuits of the central nervous system is crucial for phenotype screenings or investigations of defects in neurodegenerative disorders. Current techniques yield either low penetration depth, yield poor resolution, or are restricted by the age of the animals. Here, we present a novel ultramicroscopy protocol for fluorescence imaging and three-dimensional reconstruction in the central nervous system of adult mice. In combination with tracing as a functional assay for axonal transport, retrogradely labeled descending motor neurons were visualized with >4 mm penetration depth. The analysis of the motor cortex shortly before the onset of clinical prion disease revealed that >80% neurons have functional impairments in axonal transport. Our study provides evidence that prion disease is associated with severe axonal transport defects in the cortical motor neurons and suggests a novel mechanism for prion-mediated neurodegeneration. 相似文献
11.
What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional sensory or motor transformations. 相似文献
12.
将C.elegans n-6脂肪酸去饱和酶基因fat-1的cDNA插入到腺病毒的穿梭载体pAd-CMV中,并与骨架载体同源重组,构建腺病毒重组体(Ad.GFP.fat1),通过包装细胞系(293)产生重组腺病毒,感染原代培养的大鼠皮层细胞.在显微镜下观察、细胞增殖试剂盒(MTT)和凋亡染色试剂盒分析fat-1基因对大鼠皮层细胞凋亡的影响,核糖核酸酶保护性分析,检测fat-1基因在大鼠皮层细胞内的表达,酶联免疫分析花生四烯酸类(Eicosanoids)前列腺素(Prostaglandin E2)的含量.结果表明,通过基因重组技术,得到预期的重组病毒;fat-1基因在原代培养的大鼠皮层细胞中能有效异源表达,2d后,可检测到fat-1 mRNA的条带,与对照Ad.GFP细胞相比,fat-1基因明显抑制了大鼠皮层细胞因诱导产生的凋亡(35%),受保护细胞的前列腺素含量也明显地减少(30%). 相似文献
13.
Jing Xiang Xinyao deGrauw Abraham M. Korman Janelle R. Allen Hope L. O'Brien Marielle A. Kabbouche Scott W. Powers Andrew D. Hershey 《PloS one》2013,8(12)
The cerebral cortex serves a primary role in the pathogenesis of migraine. This aberrant brain activation in migraine can be noninvasively detected with magnetoencephalography (MEG). The objective of this study was to investigate the differences in motor cortical activation between attacks (ictal) and pain free intervals (interictal) in children and adolescents with migraine using both low- and high-frequency neuromagnetic signals. Thirty subjects with an acute migraine and 30 subjects with a history of migraine, while pain free, were compared to age- and gender-matched controls using MEG. Motor cortical activation was elicited by a standardized, validated finger-tapping task. Low-frequency brain activation (1∼50 Hz) was analyzed with waveform measurements and high-frequency oscillations (65–150 Hz) were analyzed with wavelet-based beamforming. MEG waveforms showed that the ictal latency of low-frequency brain activation was significantly delayed as compared with controls, while the interictal latency of brain activation was similar to that of controls. The ictal amplitude of low-frequency brain activation was significantly increased as compared with controls, while the interictal amplitude of brain activation was similar to that of controls. The ictal source power of high-frequency oscillations was significantly stronger than that of the controls, while the interictal source power of high-frequency oscillations was significantly weaker than that of controls. The results suggest that aberrant low-frequency brain activation in migraine during a headache attack returned to normal interictally. However, high-frequency oscillations changed from ictal hyper-activation to interictal hypo-activation. Noninvasive assessment of cortical abnormality in migraine with MEG opens a new window for developing novel therapeutic strategies for childhood migraine by maintaining a balanced cortical excitability. 相似文献
14.
Naho Konoike Yuka Kotozaki Hyeonjeong Jeong Atsuko Miyazaki Kohei Sakaki Takamitsu Shinada Motoaki Sugiura Ryuta Kawashima Katsuki Nakamura 《PloS one》2015,10(6)
When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. 相似文献
15.
Paolo d’Errico Marina Boido Antonio Piras Valeria Valsecchi Elena De Amicis Denise Locatelli Silvia Capra Francesco Vagni Alessandro Vercelli Giorgio Battaglia 《PloS one》2013,8(12)
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients. 相似文献
16.
《Somatosensory & motor research》2013,30(3):269-289
The existence of multiple motor cortical areas that differ in some of their properties is well known in primates, but is less clear in the rat. The present study addressed this question from the point of view of connectional properties by comparing the afferent and efferent projections of the caudal forelimb area (CFA), considered to be the equivalent of the forelimb area of the primary motor cortex (MI), and a second forelimb motor representation, the rostral forelimb area (RFA). As a result of various tracing experiments (including double labeling), it was observed that CFA and RFA had reciprocal corticocortical connections characterized by preferential, asymmetrical, laminar distribution, indicating that RFA may occupy a different hierarchical level than CFA, according to criteria previously discussed in the visual cortex of primates. Furthermore, it was found that RFA, but not CFA, exhibited dense reciprocal connections with the insular cortex. With respect to their efferent projection to the basal ganglia, it was observed that CFA projected very densely to the lateral portion of the ipsilateral caudate putamen, whereas the contralateral projection was sparse and more restricted. The ipsilateral projection originating from RFA was slightly less dense than that from CFA, but it covered a larger portion of the caudate putamen (in the medial direction); the contralateral projection from RFA to the caudate putamen was of the same density and extent as the ipsilateral projection. The reciprocal thalamocortical and corticothalamic connections of RFA and CFA differed from each other in the sense that CFA was mainly interconnected with the ventrolateral thalamic nucleus, while RFA was mainly connected with the ventromedial thalamic nucleus. Altogether, these connectional differences, compared with the pattern of organization of the motor cortical areas in primates, suggest that RFA in the rat may well be an equivalent of the premotor or supplementary motor area. In contrast to the corticocortical, corticostriatal, and thalamocortical connections, RFA and CFA showed similar efferent projections to the subthalamic nucleus, substantia nigra, red nucleus, tectum, pontine nuclei, inferior olive, and spinal cord. 相似文献
17.
Stefano Caproni Marco Muti Massimo Principi Pierfausto Ottaviano Domenico Frondizi Giuseppe Capocchi Piero Floridi Aroldo Rossi Paolo Calabresi Nicola Tambasco 《PloS one》2013,8(6)
Motor impairment is the most relevant clinical feature in Parkinson''s disease (PD). Functional imaging studies on motor impairment in PD have revealed changes in the cortical motor circuits, with particular involvement of the fronto-striatal network. The aim of this study was to assess brain activations during the performance of three different motor exercises, characterized by progressive complexity, using a functional fMRI multiple block paradigm, in PD patients and matched control subjects. Unlike from single-task comparisons, multi-task comparisons between similar exercises allowed to analyse brain areas involved in motor complexity planning and execution. Our results showed that in the single-task comparisons the involvement of primary and secondary motor areas was observed, consistent with previous findings based on similar paradigms. Most notably, in the multi-task comparisons a greater activation of supplementary motor area and posterior parietal cortex in PD patients, compared with controls, was observed. Furthermore, PD patients, compared with controls, had a lower activation of the basal ganglia and limbic structures, presumably leading to the impairment in the higher levels of motor control, including complexity planning and execution. The findings suggest that in PD patients occur both compensatory mechanisms and loss of efficiency and provide further insight into the pathophysiological role of distinct cortical and subcortical areas in motor dysfunction. 相似文献
18.
Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo) showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi). In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants. 相似文献
19.
Distribution of Motor Cortical Neuron Synaptic Terminals on Monkey Parvocellular Red Nucleus Neurons
《Somatosensory & motor research》2013,30(1):23-26
We determined the location of 54 horseradish peroxidase (HRP)-labeled motor cortical neuron synaptic terminals on 17 parvocellular neurons in the monkey red nucleus. Synaptic terminals and their postsynaptic elements were identified and reconstructed, using light- and electron-microscopic techniques, from serial thick and thin sections. Terminals were found on proximal and distal dendrites of small and medium-sized parvocellular neurons, where they formed excitatory synapses. Some were 180 μm from cell somata. Approximately half of the labeled terminals, aside from those located at dendritic origins, were situated strategically at or near dendritic branch points. Since monkey parvocellular neurons show little activity during movement, the obvious next question is this: How and in what way does motor cortex influence these cells? 相似文献
20.
Matthew W. Self Timo van Kerkoerle Hans Supèr Pieter R. Roelfsema 《Current biology : CB》2013,23(21):2121-2129
- Download : Download high-res image (400KB)
- Download : Download full-size image