共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebrovascular diseases are one of the most common causes of epilepsy in adults, and the incidence of stroke-induced epileptogenesis
is increasing as the population ages. The mechanisms that lead to stroke-induced epileptogenesis in a subpopulation of patients,
however, are still poorly understood. Recent advances in inducing epileptogenesis in rodent focal ischemia models have provided
tools that can be used to identify the risk factors and neurobiologic changes leading to development of epilepsy after stroke.
Here we summarize data from models in which epileptogenesis has been studied after focal ischemia; photothrombosis, middle
cerebral artery (MCA) occlusion with filament, and endothelin-1-induced MCA occlusion. Analysis of the data indicates that
neurobiologic changes occurring during stroke-induced epileptogenesis share some similarities to those induced by status epilepticus
or traumatic brain injury.
Special issue dedicated to Dr. Simo S. Oja 相似文献
2.
Endothelin Receptor Antagonist Preserves Microvascular Perfusion and Reduces Ischemic Brain Damage Following Permanent Focal Ischemia 总被引:5,自引:0,他引:5
Synthesis and release of the potent vasoconstrictor peptide endothelin-1 (ET-1) increases following cerebral ischemia and has previously been shown to mediate the delayed hypoperfusion associated with transient global ischemia. In this study we assessed the impact of ET-1 on perfusion and infarct volume in a focal model of cerebral ischemia by use of the selective ET(A) receptor antagonist Ro 61-1790 (affinity for ET(A) receptor 1000 fold greater than ETB receptor). Control rats subjected to permanent middle cerebral artery occlusion (MCAO) showed extensive reductions in microvascular perfusion 4 h post-MCAO that were significantly attenuated by Ro 61-1790 pretreatment (10 mg/kg, i.v.). Ro 61-1790 concomitantly and significantly reduced the ischemic lesion volume in the same animals. This effect was maintained 24 h post-MCAO providing that the animals received additional i.v. injections of 5 mg/kg Ro 61-1790 at 5 h and 8 h after MCAO. These findings demonstrate that ET(A) receptor antagonism partially preserves tissue perfusion following focal ischemia and that this effect is associated with significant neuroprotection. The results also support the hypothesis that vasoactive mediators, and ET-1 in particular, are important contributors to the pathogenesis of cerebral ischemic injury. 相似文献
3.
Cathepsin B, one of major lysosomal cathepsins, and JNK, a downstream component of Rho kinase (ROCK), are two families of
proteases, which play an important role in ischemic cell apoptosis. However, the interrelationship between Cathepsin B and
JNK in apotosis has not been examined. In the present study, rats were decapitated at 0, 2, 6, 24, 48 h of reperfusion after
2 h of middle cerebral artery occlusion (MCAO); TUNEL-positive cells appeared in the ipsilateral preoptic region during reperfusion
after 2-h MCAO, and gradually increased to a peak of 24 h after reperfusion; Phospho-JNK (p-JNK) immunoreactivity, occurring
after Cathepsin B expression, was gradually increased and peaked altogether with Cathepsin B at 6-h reperfusion; Fasudil (5 mg/kg,
intraperitoneally), an inhibitor of ROCK, decreased the level of p-JNK and apoptotic neurons, and had no effect on cathepsin
B; Immunofluorescent double labeling showed that the colocalization of cathepsin B with p-JNK appeared in the preoptic region
at 2, 6, 24, 48 h of reperfusion. These findings indicate that a signal transduction pathway by ischemia–reperfusion is most
likely to exist: lysosomal cathepsin B-Rho/Rho kinase pathway-JNK signaling pathway-mitochondrial-dependent intrinsic pathway. 相似文献
4.
5.
After stroke, the brain has shown to be able to achieve spontaneous functional recovery despite severe cerebral damage. This phenomenon is poorly understood. To address this issue, focal transient ischemia was induced by 60 min middle cerebral artery occlusion in Wistar rats. The evolution of stroke was followed using two magnetic resonance imaging modalities: diffusion spectrum imaging (acquired before, one and four weeks after stroke) and functional magnetic resonance imaging (acquired before and five weeks after stroke). To confirm the imaging observations, immunohistochemical staining for myelin, astrocytes and macrophages/microglia was added. At four weeks after stroke, a focal alteration of the diffusion anisotropy was observed between the ipsilesional ventricle and the lesion area. Using tractography this perturbation was identified as reorganization of the ipsilesional internal capsule. Functional imaging at five weeks after ischemia demonstrated activation of the primary sensorimotor cortex in both hemispheres in all rats except one animal lacking a functional response in the ipsilesional cortex. Furthermore, fiber tracking showed a transhemispheric fiber connection through the corpus callosum, which-in the rat without functional recovery-was lost. Our study shows the influence of the internal capsule reorganization, combined with inter-hemispheric connections though the corpus callosum, on the functional activation of the brain from stroke. In conclusion, tractography opens a new door to non-invasively investigate the structural correlates of lack of functional recovery after stroke. 相似文献
6.
This investigation was performed to evaluate the effects of ACPD [(1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid], a metabotropic glutamate receptor agonist, on cerebral O2 consumption during focal cerebral ischemia. Male Wistar rats were placed in control (n = 7) and ACPD (n = 7) groups under isoflurane anesthesia. Twenty minutes after middle cerebral artery (MCA) occlusion, gauze sponges with 10–5 M ACPD or normal saline were placed on the ischemic cortex (IC) for a period of 40 min and were changed every 10 min. One hour after MCA occlusion, regional cerebral blood flow (rCBF) was determined using the C14-iodoantipyrine autoradiographic technique. Regional arterial and venous oxygen saturation were determined using microspectrophotometry. There were no statistical differences in vital signs, blood gases, and hemoglobin between the groups. In the control group, the cerebral blood flow and oxygen consumption of the IC were significantly lower than the contralateral cortex (rCBF: 45 ± 11 vs. 110 ± 11 ml/min/100 g, O2 consumption: 2.9 ± 0.4 vs. 5.4 ± 1.1 ml O2/min/100 g). ACPD did not change regional cerebral blood flow of the IC, but did significantly increase the oxygen extraction (7.8 ± 0.2 vs. 6.9 ± 0.3 ml O2/100 ml) and oxygen consumption of the IC (4.3 ± 1.5 vs. 2.9 ± 0.4) compared to the control IC. Our data demonstrated that topical application of 10–25 M ACPD to the ischemic area worsened cerebral O2 balance. These data suggest that metabotropic glutamate receptors are not maximally activated during ischemia in the temporal cortex. 相似文献
7.
Depletion of neurogenesis worsens functional outcome in young-adult mice after focal cerebral ischemia, but whether a similar effect occurs in older mice is unknown. Using middle-aged (12-month-old) transgenic (DCX-TK(+)) mice that express herpes simplex virus thymidine kinase (HSV-TK) under control of the doublecortin (DCX) promoter, we conditionally depleted DCX-positive cells in the subventricular zone (SVZ) and hippocampus by treatment with ganciclovir (GCV) for 14 days. Focal cerebral ischemia was induced by permanent occlusion of the middle cerebral artery (MCAO) or occlusion of the distal segment of middle cerebral artery (dMCAO) on day 14 of vehicle or GCV treatment and mice were killed 24 hr or 12 weeks later. Increased infarct volume or brain atrophy was found in GCV- compared to vehicle-treated middle-aged DCX-TK(+) mice, both 24 hr after MCAO and 12 weeks after dMCAO. More severe motor deficits were also observed in GCV-treated, middle-aged DCX-TK(+) transgenic mice at both time points. Our results indicate that ischemia-induced newborn neurons contribute to anatomical and functional outcome after experimental stroke in middle-aged mice. 相似文献
8.
本文探讨三七皂苷Rg1对局灶性脑缺血再灌注损伤大鼠海马部位的脑源性神经营养因子(brain-derivedneurotrophic factor,BDNF)阳性蛋白的含量和阳性神经元数目是否具有上调作用。实验结果表明三七皂苷Rg1高、中、低剂量组和阳性对照组均能明显改善脑缺血的神经缺失症状,并能上调大鼠脑缺血再灌注损伤海马部位的BDNF阳性蛋白的含量和阳性神经元数量(P<0.05);与阳性对照组(尼莫地平1 mg/kg)相比,用药7 d时,Rg1中剂量组(100 mg/kg)在改善脑缺血的神经缺失症状以及上调大鼠脑缺血再灌注损伤海马部位的BDNF阳性蛋白的含量和阳性神经元数量方面,作用上强于尼莫地平(P<0.05)。三七皂苷Rg1能上调BDNF阳性蛋白的表达,通过BDNF对脑缺血再灌注神经元损伤所起的保护作用,从而发挥其对脑缺血的治疗作用,这可能是三七皂苷Rg1对脑缺血保护作用的机制之一。 相似文献
9.
Jun Li Xuesong Ma Wei Yu Zhangqun Lou Dunlan Mu Ying Wang Baozhong Shen Sihua Qi 《PloS one》2012,7(9)
Background and Purpose
Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia.Methods
Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis.Results
Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period.Conclusions
Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by the upregulation of the Cyclophilin D protein, the destruction of the mitochondrial membrane potential and the generation of excessive reactive oxidative species. 相似文献10.
Pyruvate-supported oxygen uptake was determined as a measure of the functional capacity of mitochondria obtained from rat brain during unilateral middle cerebral artery occlusion and reperfusion. During ischemia, substantial reductions developed in both ADP-stimulated and uncoupled respiration in tissue from the focus of the affected area in the striatum and cortex. A similar pattern of change but with lesser reductions was seen in the adjacent perifocal tissue. Succinate-supported respiration was more affected than that with pyruvate in perifocal tissue at 2 h of ischemia, suggesting additional alterations to mitochondrial components in this tissue. Mitochondrial respiratory activity recovered fully in samples from the cortex, but not the striatum, within the first hour of reperfusion following 2 h of ischemia and remained similar to control values at 3 h of reperfusion. In contrast, impairment of the functional capacity of mitochondria from all three regions was seen in the first 3 h of reperfusion following 3 h of ischemia. Extensive infarction generally affecting the cortical focal tissue with more variable involvement of the perifocal tissue developed following 2 h of focal ischemia. Thus, mitochondrial impairment during the first 3 h of reperfusion was apparently not essential for tissue infarction to develop. Nonetheless, the observed mitochondrial changes could contribute to the damage produced by permanent focal ischemia as well as the larger infarcts produced when reperfusion was initiated following 3 h of ischemia. 相似文献
11.
Shinichiro Teramoto Hideki Shimura Ryota Tanaka Yoshiaki Shimada Nobukazu Miyamoto Hajime Arai Takao Urabe Nobutaka Hattori 《PloS one》2013,8(6)
Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a “physiological” HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes. 相似文献
12.
13.
目的:检测胰岛素样生长因子-1(IGF-1)对青年和老年大鼠局灶脑缺血后神经发生及其后细胞生存的影响.方法:健康雄性SD青年鼠(3-4个月)和老年鼠(1年)随机分组,侧脑室注入IGF-1,1天后进行大鼠大脑中动脉阻塞(MCAO),对照组由生理盐水取代.采用BrdU标记方法鉴定MCAO后7d和28d的增殖细胞.BrdU于MCAO后第6d由腹腔注入.免疫组化法检测7天后BrdU、PSA-NCAM标记细胞和28天后BrdU、BrdU/MAP2双标细胞.结果:老年组中BrdU阳性细胞的数目7d后较对照组增加5.1倍;青年纽中BrdU阳性细胞的数目7d后较对照组增加5.5倍.28d后,BrdU阳性细胞的残留率在青年IGF-1处理组和老年IGF-1处理组中分别是79.2%和75.1%,分别相对于对照组的77.1%和52.3%.老年组中PSA-NCAM阳性细胞的数目7d后较对照组增加3.2倍;青年组中PSA-NCAM阳性细胞的数目7d后较对照组增加3.7倍.28d后,BrdU/MAP2阳性细胞在青年IGF-1处理组较对照组增加7.0倍,在老年IGF-1处理组较对照组增加4.9倍.结论:此结果提示局部应用IGF-1进行缺血前预处理,在青年鼠和老年鼠中均能诱导神经发生,且在老年鼠中能明显提高神经发生后的增殖细胞的生存率和向神经元分化的能力.这一研究结果将有助于研究IGF-1在中老年脑损伤病人中的治疗性应用. 相似文献
14.
Peimin Zhu Xiaohong Liu Laura S. Treml Michael P. Cancro Bruce D. Freedman 《The Journal of biological chemistry》2009,284(34):22878-22887
It is well established that CpG promotes pro-inflammatory cytokine and antibody production by B cells via the Toll-like receptor 9 (TLR9)-dependent pathway. However, scavenger receptors (SRs) are also capable of binding such pathogen-derived molecules, yet their contribution to CpG-induced signaling events has not yet been evaluated. Here we identified a novel TLR9-independent mechanism of CpG-induced signaling and immune function that is mediated by the scavenger B1 receptor (SR-B1). Specifically, we show that CpG/SR-B1 triggers calcium entry into primary B lymphocytes via phospholipase Cγ-1-mediated activation of TRPC3 channels and also B cell adhesion to vascular cell adhesion molecule-1. CpG-induced calcium signals and vascular cell adhesion molecule-1 adhesion are TLR9-independent and are mediated exclusively by SR-B1. Although pro-inflammatory cytokine and Ig production induced by CpG require TLR9 expression, we also found that SR-B1 negatively regulates TLR9-dependent production of interleukin-6, interleukin-10, and IgM. Thus, our results provide a novel perspective on the complexity of CpG signaling within B cells by demonstrating that SR-B1 is an alternative pathway for nucleic acid-induced signaling that provides feedback inhibition on specific TLR9-dependent responses of B cells. Consequently, these results have wide implications for understanding the mechanisms regulating immune tolerance to nucleic acids and pathogen-associated molecules.Stimulus-induced dynamic changes in the concentration of cytoplasmic calcium are primary determinants of the activation, immunological function, and developmental fate of lymphocytes. Calcium signaling through the B cell antigen receptor (BCR)2 complex is initiated by the activation of proximal tyrosine kinases Lyn and Syk, which phosphorylate the adaptor BLNK to facilitate its association with and activation of PLCγ-2. PLCγ2 hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and 1,4,5-inositol trisphosphate (IP3) (for review see Ref. 1), which activates IP3 receptor/channels that mediate Ca2+ release from endoplasmic reticulum into the cytosol (2) (for review see Refs. 3, 4). Ca2+ release from endoplasmic reticulum stores and the resulting depletion of Ca2+ (not an increase in cytoplasmic [Ca2+]) are the central and prerequisite events required to activate plasma membrane “store-operated” calcium release-activated calcium (CRAC) channels.CRAC channels are responsible for antigen receptor-triggered calcium entry; however, a growing body of evidence suggests that CRAC channels do not underlie all the diverse calcium-regulated responses of lymphocytes, particularly those triggered by innate stimuli. For example, we previously identified several calcium-permeant non-selective cation channels (NSCCs) that are uniquely activated by distinct arachidonic acid-derived (eicosanoid) inflammatory mediators and by mechanical stimuli (5–7). Thus, multiple calcium-permeant channels with distinct activation mechanisms may underlie stimulus-specific calcium-dependent B cell functions in vivo. Surprisingly, a number of pathogen-associated Toll-like receptor agonists are known to be strong B cell mitogens, yet the potential for calcium-dependent signaling functions by these polyclonal B cell mitogens has not yet been fully evaluated.Studies detailed in this report focus on the mechanism of calcium signaling elicited by unmethylated CpG DNA in primary B cells. Unmethylated CpG DNA is typically considered a pathogen-derived molecule that triggers polyclonal B cell activation, cytokine production, and immunoglobulin production via Toll-like receptor 9 (TLR9) engagement (8, 9). Because CpG induces a subset of the B cell responses normally elicited by cognate antigen binding to the BCR complex, we asked whether CpG stimulation mobilizes calcium. We found that while CpG stimulation and BCR engagement both elicit similar biphasic calcium signals, CpG-mediated calcium entry is regulated by TRPC3, a calcium-permeant NSCC of the canonical transient receptor potential (TRPC) channel family (10) and that, unlike the BCR, which couples to calcium entry via PLCγ-2, TRPC3 activation involves an adaptor like function of PLCγ-1.We also report that CpG-mediated calcium signals are initiated by the scavenger receptor B1 (SR-B1) independently of TLR9. To our knowledge, this is the first demonstration of SR-B1 function in B lymphocytes; although scavenger receptors have been implicated in the responses of other immune cells. For example, bacterial pathogens and byproducts of apoptotic cells contribute to the pathogenesis of immune-mediated diseases, including lupus in part via MARCO and CD36 expressed by marginal zone macrophages (11). In naïve B cells, CD36 expression is largely restricted to marginal zone cells. Notably, CD36 cooperates with TLR2 to produce antibodies against phosphocholine, which is an endogenous antigen (13). Given our finding that CpG elicits calcium signals via SR-B1 on lymphocytes, we asked whether SR-B1 might also act cooperatively, in this case with TLR9, to trigger inflammatory responses of B cells. In fact, our results indicate that SR-B1 negatively regulates CpG/TLR9-mediated production of specific immunoglobulins (IgM) and pro-inflammatory cytokines (IL-6 and IL-10) by B cells. These findings have important implications for understanding how calcium is regulated in B cells, but also point to novel mechanisms by which pathogen-associated molecules regulate B cell activation. 相似文献
15.
Tao-Jie Ren Ren Qiang Zheng-Lin Jiang Guo-Hua Wang Li Sun Rui Jiang Guang-Wei Zhao Le-Yang Han 《PloS one》2013,8(6)
To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF). Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1) reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2) improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3) increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca2+-activated K+ channels on the cerebral blood vessel endothelium. 相似文献
16.
大鼠局灶性脑缺血模型的有效制备 总被引:1,自引:0,他引:1
目的比较三种不同手术方法制作大鼠永久性脑缺血模型的效果,包括死亡率、神经功能评分、脑梗死体积、手术效率。方法将采用不同手术方法制备脑缺血模型的大鼠随机分为三组。1组在术中分别结扎颈总动脉(CCA)、颈外动脉(ECA)、枕动脉、翼腭动脉,并且用动脉夹对颈内动脉(ICA)进行临时夹闭;2组在术中分别结扎颈总动脉、颈外动脉,暴露枕动脉和翼腭动脉但不结扎,用丝线悬挂颈内动脉而不是用动脉夹夹闭,线栓在显微镜直视下插入颈内动脉越过翼腭动脉起始点至大脑中动脉分叉处;3组只暴露颈总动脉、颈外动脉和颈内动脉,结扎颈总动脉、颈外动脉,丝线悬挂颈内动脉,显微镜下将线栓盲插至颈内动脉大脑中动脉分叉处。分别检测三组模型的死亡率、神经功能评分、梗死体积、手术时间。结果第3组制作动物模型的方法所花费时间平均为17.5 min,死亡率较低,神经功能评分及梗死体积稳定。结论采用第3组手术方法可以缩短手术时间,提高手术效率,能够高效地制作出更加稳定的可用于临床实验的大鼠脑缺血模型。 相似文献
17.
18.
Li Wanting Ye Anqi Ao Luyao Zhou Lin Yan Yunyi Hu Yahui Fang Weirong Li Yunman 《Neurochemical research》2020,45(10):2258-2277
Neurochemical Research - Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote... 相似文献
19.
When mutations in two different genes produce the same mutant phenotype, it suggests that the encoded proteins either interact with each other, or act in parallel to fulfill a similar purpose. Haploinsufficiency of Neurofibromin and over-expression of Endothelin 3 both cause increased numbers of melanocytes to populate the dermis during mouse development, and thus we are interested in how these two signaling pathways might intersect. Neurofibromin is mutated in the human genetic disease, neurofibromatosis type 1, which is characterized by the development of Schwann cell based tumors and skin hyper-pigmentation. Neurofibromin is a GTPase activating protein, while the Endothelin 3 ligand activates Endothelin receptor B, a G protein coupled receptor. In order to study the genetic interactions between endothelin and neurofibromin, we defined the deletion breakpoints of the classical Ednrb piebald lethal allele (Ednrbs-l) and crossed these mice to mice with a loss-of-function mutation in neurofibromin, Dark skin 9 (Dsk9). We found that Neurofibromin haploinsufficiency requires Endothelin receptor B to darken the tail dermis. In contrast, Neurofibromin haploinsufficiency increases the area of the coat that is pigmented in Endothelin receptor B null mice. We also found an oncogenic mutation in the G protein alpha subunit, GNAQ, which couples to Endothelin receptor B, in a uveal melanoma from a patient with neurofibromatosis type 1. Thus, this data suggests that there is a complex relationship between Neurofibromin and Endothelin receptor B. 相似文献
20.
Aims Taurine as an endogenous substance possesses a number of cytoprotective properties. In the study, we have evaluated the neuroprotective
effect of taurine and investigated whether taurine exerted neuroprotection through affecting calpain/calpastatin or caspase-3
actions during focal cerebral ischemia, since calpain and caspase-3 play central roles in ischemic neuronal death. Methods Male Sprague–Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAo), and 22 h of reperfusion. Taurine
was administrated intravenously 1 h after MCAo. The dose–responses of taurine to MCAo were determined. Next, the effects of
taurine on the activities of calpain, calpastatin and caspase-3, the levels of calpastatin, microtubule-associated protein-2
(MAP-2) and αII-spectrin, and the apoptotic cell death in penumbra were evaluated. Results Taurine reduced neurological deficits and decreased the infarct volume 24 h after MCAo in a dose-dependent manner. Treatment
with 50 mg/kg of taurine significantly increased the calpastatin protein levels and activities, and markedly reduced the m-calpain
and caspase-3 activities in penumbra 24 h after MCAo, however, it had no significant effect on μ-calpain activity. Moreover,
taurine significantly increased the MAP-2 and αII-spectrin protein levels, and markedly reduced the ischemia-induced TUNEL
staining positive score within penumbra 24 h after MCAo. Conclusions Our data demonstrate the dose-dependent neuroprotection of taurine against transient focal cerebral ischemia, and suggest
that one of protective mechanisms of taurine against ischemia may be blocking the m-calpain and caspase-3-mediated apoptotic
cell death pathways. 相似文献