首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HDAC4 is a Class II histone deacetylase (HDAC) that is highly expressed in the brain, but whose functional significance in the brain is not known. We show that forced expression of HDAC4 in cerebellar granule neurons protects them against low potassium-induced apoptosis. HDAC4 also protects HT22 neuroblastoma cells from death induced by oxidative stress. HDAC4-mediated neuroprotection does not require its HDAC catalytic domain and cannot be inhibited by chemical inhibitors of HDACs. Neuroprotection by HDAC4 also does not require the Raf-MEK-ERK or the PI-3 kinase-Akt signaling pathways and occurs despite the activation of c-jun, an event that is generally believed to condemn neurons to die. The protective action of HDAC4 occurs in the nucleus and is mediated by a region that contains the nuclear localization signal. HDAC4 inhibits the activity of cyclin-dependent kinase-1 (CDK1) and the progression of proliferating HEK293T and HT22 cells through the cell cycle. Mice-lacking HDAC4 have elevated CDK1 activity and display cerebellar abnormalities including a progressive loss of Purkinje neurons postnatally in posterior lobes. Surviving Purkinje neurons in these lobes have duplicated soma. Furthermore, large numbers of cells within these affected lobes incorporate BrdU, indicating cell-cycle progression. These abnormalities along with the ability of HDAC4 to inhibit CDK1 and cell-cycle progression in cultured cells suggest that neuroprotection by HDAC4 is mediated by preventing abortive cell-cycle progression.  相似文献   

2.
Autophagy (macroautophagy) is an evolutionally conserved process by which cytoplasmic proteins and organelles are surrounded by unique double membranes and are subsequently degraded upon fusion with lysosomes. Many autophagy-related genes (Atg) have been identified in yeast; a ubiquitin-like Atg12-Atg5 system is also essential for the elongation of the isolation membrane in mammalian cells. Nevertheless, the regulation of autophagy in neurons remains largely unknown. In this study, we crossed conditional knockout mice Atg5(flox/flox) with pcp2-Cre transgenic mice, which express Cre recombinase through a Purkinje cell-specific promoter, pcp2. In Atg5(flox/flox); pcp2-Cre mice, the Atg5 gene was excised as early as postnatal day 6; Purkinje cells started to degenerate after approximately 8 weeks, and the animals showed an ataxic gait from around 10 months. Initially, however, the Purkinje cells showed axonal swelling around its terminals from as early as 4 weeks after birth. An electron microscopic analysis revealed the accumulation of autophagosome-like double-membrane structures in the swollen regions, together with numerous membranous organelles, such as tubular or sheet-like smooth endoplasmic reticulum and vesicles. These results suggest that Atg5 plays important roles in the maintenance of axon morphology and membrane structures, and its loss of function leads to the swelling of axons, followed by progressive neurodegeneration in mammalian neurons.  相似文献   

3.
Some neurons, including cerebellar Purkinje cells, are completely ensheathed by astrocytes. When granule cell neurons and functional glia were eliminated from newborn mouse cerebellar cultures by initial exposure to a DNA synthesis inhibitor, Purkinje cells lacked glial sheaths and there was a tremendous sprouting of Purkinje cell recurrent axon collaterals, terminals of which hyperinnervated Purkinje cell somata, including persistent somatic spines, and formed heterotypical synapses with Purkinje cell dendritic spines, sites usually occupied by parallel fiber (granule cell axon) terminals. Purkinje cells in such preparations failed to develop complex spikes when recorded from intracellularly, and their membrane input resistances were low, making them less sensitive to inhibitory input. If granule cells and oligodendrocytes were eliminated, but astrocytes were not compromised, sprouting of recurrent axon collaterals occurred and their terminals projected to Purkinje cell dendritic spines, but the Purkinje cells had astrocytic sheaths, their somata were not hyperinnervated, the somatic spines had disappeared, complex spike discharges predominated, and membrane input resistance was like that of Purkinje cells in untreated control cultures. When cerebellar cultures without granule cells and glia were transplanted with granule cells and/or glia from another source, a series of changes occurred that included stripping of excess Purkinje cell axosomatic synapses by astrocytic processes, reduction of heterotypical axospinous synapses in the presence of astrocytes, disappearance of Purkinje cell somatic spines with astrocytic ensheathment, and proliferation of Purkinje cell dendritic spines after the introduction of astrocytes. Dendritic spine proliferation was followed by formation of homotypical axospinous synapses when granule cells were present or persistence as unattached spines in the absence of granule cells. The results of these studies indicate that astrocytes regulate the numbers of Purkinje cell axosomatic and axospinous synapses, induce Purkinje cell dendritic spine proliferation, and promote the structural and functional maturation of Purkinje cells.  相似文献   

4.
Neuronal migration is essential for the development of the mammalian brain. Here, we document severe defects in neuronal migration and reduced numbers of neurons in lamin B1-deficient mice. Lamin B1 deficiency resulted in striking abnormalities in the nuclear shape of cortical neurons; many neurons contained a solitary nuclear bleb and exhibited an asymmetric distribution of lamin B2. In contrast, lamin B2 deficiency led to increased numbers of neurons with elongated nuclei. We used conditional alleles for Lmnb1 and Lmnb2 to create forebrain-specific knockout mice. The forebrain-specific Lmnb1- and Lmnb2-knockout models had a small forebrain with disorganized layering of neurons and nuclear shape abnormalities, similar to abnormalities identified in the conventional knockout mice. A more severe phenotype, complete atrophy of the cortex, was observed in forebrain-specific Lmnb1/Lmnb2 double-knockout mice. This study demonstrates that both lamin B1 and lamin B2 are essential for brain development, with lamin B1 being required for the integrity of the nuclear lamina, and lamin B2 being important for resistance to nuclear elongation in neurons.  相似文献   

5.
Maladaptive responses to stress adversely affect human behavior, yet the signaling mechanisms underlying stress-responsive behaviors remain poorly understood. Using a conditional gene knockout approach, the α isoform of p38 mitogen-activated protein kinase (MAPK) was selectively inactivated by AAV1-Cre-recombinase infection in specific brain regions or by promoter-driven excision of p38α MAPK in serotonergic neurons (by Slc6a4-Cre or ePet1-Cre) or astrocytes (by Gfap-CreERT2). Social defeat stress produced social avoidance (a model of depression-like behaviors) and reinstatement of cocaine preference (a measure of addiction risk) in wild-type mice, but not in mice having p38α MAPK selectively deleted in serotonin-producing neurons of the dorsal raphe nucleus. Stress-induced activation of p38α MAPK translocated the serotonin transporter to the plasma membrane and increased the rate of transmitter uptake at serotonergic nerve terminals. These findings suggest that stress initiates?a cascade of molecular and cellular events in which p38α MAPK induces a hyposerotonergic state underlying depression-like and drug-seeking behaviors.  相似文献   

6.
星形胶质细胞是大脑中一类高度异质的重要大胶质细胞,不仅在脑的发育和功能中起到重要作用,也参与多种神经病理生理学过程.多项研究表明B淋巴细胞瘤-2相关X蛋白(B-cell lymphoma-2 associated X protein,BAX)依赖性凋亡通路参与调控正常发育过程中脑内神经元的数量与分布,但是对其调控星形胶...  相似文献   

7.
Glutamate transport is a primary mechanism for regulating extracellular levels of glutamate in the central nervous system. GLT1, the most abundant of the known high-affinity glutamate transporters, is found exclusively in astrocytes in adult brain of several species, but we and others have recently identified neurons that transiently express GLT1 protein in the developing brain. We now demonstrate the development of cell type specificity for GLT1 expression at 60, 71, and 136 days' gestation in the developing sheep brain (term = 145 days). At 60 and 71 days of gestation, GLT1 colocalizes with calbindin in Purkinje cells in the cerebellum, and this expression pattern has a novel distribution that is reminiscent of the parasagittal zebrin-like bands. GLT1 immunoreactivity simultaneously occurs in periventricular white matter, anterior commissure, and striatal white matter, dissipating by 136 days. GLT1 protein expression within astrocytes is developmentally regulated, appearing first in vimentin positive radial glia at 60 and 71 days and then switching to GFAP positive parenchymal and perivascular astrocytes at 136 days. Expression of GLT1 in subsets of vimentin-positive astrocytes persists in white matter but not in cortex. These results identify a novel compartmentation within cerebellar cortex and neuronal and axonal pathway localization of GLT1, suggesting the participation of this glutamate transporter in the development of the topographic organization of cerebellar cortex and a transient neuronal function for GLT1 in developing brain. In addition, GLT1 expression is highly plastic, being neither exclusively astroglial nor uniformly expressed in different populations of astrocytes during brain development.  相似文献   

8.
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.  相似文献   

9.
The presynaptic protein RIM1α mediates multiple forms of presynaptic plasticity at both excitatory and inhibitory synapses. Previous studies of mice lacking RIM1α (RIM1α(-/-) throughout the brain showed that deletion of RIM1α results in multiple behavioral abnormalities. In an effort to begin to delineate the brain regions in which RIM1 deletion mediates these abnormal behaviors, we used conditional (floxed) RIM1 knockout mice (fRIM1). By crossing these fRIM1 mice to previously characterized transgenic cre lines, we aimed to delete RIM1 selectively in the dentate gyrus (DG), using a specific preproopiomelanocortin promoter driving cre recombinase (POMC-cre) line , and in pyramidal neurons of the CA3 region of hippocampus, using the kainate receptor subunit 1 promoter driving cre recombinase (KA-cre). Neither of these cre driver lines was uniquely selective to the targeted regions. In spite of this, we were able to reproduce a subset of the global RIM1α(-/-) behavioral abnormalities, thereby narrowing the brain regions in which loss of RIM1 is sufficient to produce these behavioral differences. Most interestingly, hypersensitivity to the pyschotomimetic MK-801 was shown in mice lacking RIM1 selectively in the DG, arcuate nucleus of the hypothalamus and select cerebellar neurons, implicating novel brain regions and neuronal subtypes in this behavior.  相似文献   

10.
Glutamate transport is a primary mechanism for regulating extracellular levels of glutamate in the central nervous system. GLT1, the most abundant of the known high‐affinity glutamate transporters, is found exclusively in astrocytes in adult brain of several species, but we and others have recently identified neurons that transiently express GLT1 protein in the developing brain. We now demonstrate the development of cell type specificity for GLT1 expression at 60, 71, and 136 days' gestation in the developing sheep brain (term = 145 days). At 60 and 71 days of gestation, GLT1 colocalizes with calbindin in Purkinje cells in the cerebellum, and this expression pattern has a novel distribution that is reminiscent of the parasagittal zebrin‐like bands. GLT1 immunoreactivity simultaneously occurs in periventricular white matter, anterior commissure, and striatal white matter, dissipating by 136 days. GLT1 protein expression within astrocytes is developmentally regulated, appearing first in vimentin positive radial glia at 60 and 71 days and then switching to GFAP positive parenchymal and perivascular astrocytes at 136 days. Expression of GLT1 in subsets of vimentin‐positive astrocytes persists in white matter but not in cortex. These results identify a novel compartmentation within cerebellar cortex and neuronal and axonal pathway localization of GLT1, suggesting the participation of this glutamate transporter in the development of the topographic organization of cerebellar cortex and a transient neuronal function for GLT1 in developing brain. In addition, GLT1 expression is highly plastic, being neither exclusively astroglial nor uniformly expressed in different populations of astrocytes during brain development. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 515–526, 1999  相似文献   

11.
d-amino acid oxidase (d-AAO) is a peroxisomal flavoenzyme, the physiological substrate and the precise function of which are still unclear. We have investigated D-AAO distribution in rat brain, by immunocytochemistry, with an affinity-purified polyclonal antibody. Immunoreactivity occurred in both neuronal and glial cells, albeit at different densities. Glial immunostaning was strongest in the caudal brainstem and cerebellar cortex, particularly in astrocytes, Golgi-Bergmann glia, and tanycytes. Hindbrain neurons were generally more immunoreactive than those in the forebrain. Immunopositive forebrain cell populations included mitral cells in the olfactory bulb, cortical and hippocampal neurons, ventral pallidum, and septal, reticular thalamic, and paraventricular hypothalamic nuclei. Within the positive regions, not all the neuronal populations were equally immunoreactive; for example, in the thalamus, only the reticular and anterodorsal nuclei showed intense labelling. In the hindbrain, immunopositivity was virtually ubiquitous, and was especially strong in the reticular formation, pontine, ventral and dorsal cochlear, vestibular, cranial motor nuclei, deep cerebellar nuclei, and the cerebellar cortex, especially in Golgi and Purkinje cells.  相似文献   

12.
To establish the genetic tools for conditional gene deletion in mouse retinal progenitors, we generated a Dkk3-Cre transgenic mouse line using bacterial artificial chromosome (BAC) transgenesis. Cre recombination efficiency in vivo was assayed by crossing this transgenic line, termed BAC-Dkk3-Cre, with the CAG-CAT-Z reporter line. This BAC-Dkk3-Cre line showed Cre recombinase activity in most retinal progenitors. Cre activity was detectable from embryonic day 10.5 (E10.5) and generally restricted to the retina during embryogenesis. To verify that BAC-Dkk3-Cre mice successfully circumvented lethality, we generated Otx2flox/flox/BAC-Dkk3-Cre+ mice as Otx2 conditional knockout mice. The Otx2flox/flox/BAC-Dkk3-Cre+ mice were viable, and their retina showed loss of mature cell-type markers of photoreceptor cells, bipolar cells, and horizontal cells, in contrast, amacrine-like cells noticeably increased. Thus, the BAC-Dkk3-Cre transgenic mouse line provides a powerful tool for generating conditional knockout mouse lines for studying loss of gene functions in the developing retina.  相似文献   

13.
14.
The cerebellum expresses one of the highest levels of the plasma membrane Ca(2+) ATPase, isoform 2 in the mammalian brain. This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex; i.e. the Purkinje neurons (PNs). Here we review recent evidence, including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2 (PMCA2) knockout mouse, to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour. These studies have also revealed that deletion of PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development, they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.  相似文献   

15.
COUP-TFII (also known as Nr2f2), a member of the nuclear orphan receptor superfamily, is expressed in several regions of the central nervous system (CNS), including the ventral thalamus, hypothalamus, midbrain, pons, and spinal cord. To address the function of COUP-TFII in the CNS, we generated conditional COUP-TFII knockout mice using a tissue-specific NSE-Cre recombinase. Ablation of COUP-TFII in the brain resulted in malformation of the lobule VI in the cerebellum and a decrease in differentiation of cerebellar neurons and cerebellar growth. The decrease in cerebellar growth in NSECre/+/CIIF/F mice is due to reduced proliferation and increased apoptosis in granule cell precursors (GCPs). Additional studies demonstrated that insulin like growth factor 1 (IGF-1) expression was reduced in the cerebellum of NSECre/+/CIIF/F mice, thereby leading to decreased Akt1 and GSK-3β activities, and the reduced expression of mTOR. Using ChIP assays, we demonstrated that COUP-TFII was recruited to the promoter region of IGF-1 in a Sp1-dependent manner. In addition, dendritic branching of Purkinje cells was decreased in the mutant mice. Thus, our results indicate that COUP-TFII regulates growth and maturation of the mouse postnatal cerebellum through modulation of IGF-1 expression.  相似文献   

16.
The adult rat cerebellum has minimal enkephalin immunoreactivity and is devoid of opiate-binding activity. Using novel monoclonal antibodies to the mammalian enkephalin precursor, we describe the immunofluorescent detection of proenkephalin, in the absence of mature enkephalin peptides, in subpopulations of rat cerebellar neurons and astrocytes. In cryostat sections, neurons that express proenkephalin include Golgi cells, macroneurons within deep cerebellar nuclei and a subpopulation of Purkinje cells. Proenkephalin messenger RNA and protein are present in subpopulations of both grey and white matter astrocytes, but not Bergmann glia. In dissociated glial culture, proenkephalin is expressed in process-bearing astrocytes, apparently in association with a subset of intermediate filaments. Proenkephalin within astrocytes is not seen until the second postnatal week and increases through to adulthood. Neuropeptide gene expression adds to the growing range of neuronal-type properties glial cells can display.  相似文献   

17.
Laminin α1 (Lama1), which is a subunit of laminin-1 (laminin-111), a heterotrimeric ECM protein, is essential for embryonic development and promotes neurite outgrowth in culture. Because the deletion of Lama1 causes lethality at early embryonic stages in mice, the in vivo role of Lama1 in neural development and functions has not yet been possible to determine. In this study, we generated conditional Lama1 knockout (Lama1(CKO)) mice in the epiblast lineage using Sox2-Cre mice. These Lama1(CKO) mice survived, but displayed behavioral disorders and impaired formation of the cerebellum. Deficiency of Lama1 in the pial basement membrane of the meninges resulted in defects in the conformation of the meninges. During cerebellar development, Lama1 deficiency also caused a decrease in the proliferation and migration of granule cell precursors, disorganization of Bergmann glial fibers and endfeet, and a transient reduction in the activity of Akt. A marked reduction in numbers of dendritic processes in Purkinje cells was observed in Lama1(CKO) mice. Together, these results indicate that Lama1 is required for cerebellar development and functions.  相似文献   

18.
Immunohistochemistry for osteocalcin (OC) and osteopontin (OPN) was performed to know their distributions in the hind brain of adult rats. OC- and OPN-immunoreactivity (-ir) were detected in neuronal cell bodies, including perikarya and proximal dendrites and the neuropil. In the cranial nerve motor nuclei, numerous OC- and OPN-immunoreactive (-ir) neurons were detected. The neuropil in the cranial motor nuclei mostly showed strong OC- and OPN-staining intensity. The cranial nerve sensory nuclei and other relay and modulating structures in the lower brain stem also contained various numbers of OC- and OPN-ir neurons. The staining intensities in the neuropil were varied among these regions. In the cerebellar cortex, Purkinje cells and granule cells showed OPN-ir but not OC-ir. However, OC- and OPN-ir neurons were abundantly distributed throughout the cerebellar nuclei. The neuropil in the cerebellar nuclei showed moderate OC-ir and strong OPN-ir staining intensities. These findings indicate that the distribution patterns of OC- and OPN-ir neurons were similar in many structures within the hind brain. OC may play a role in modulating neuroprotective function of OPN.  相似文献   

19.
: The distribution of hexokinase (ATP:d -hexose 6-phosphotransferase, EC 2.7.1.1) in the rat cerebellar cortex has been studied at the electron microscopic level using the peroxidase-antiperoxidase procedure. Extensive staining of cytoplasmic regions, with some increased staining at mitochondrial profiles, was seen in the cell bodies of both neurons (basket, stellate, Lugaro, Golgi, and granule cells) and astrocytes. Oligodendrocytes showed little or no detectable staining. Purkinje cell perikarya were much less intensely stained than were the perikarya of other neurons. The initial portion of the Purkinje dendrite was, like the perikaryon from which it emerged, lightly stained. More intense staining was seen in the secondary and tertiary branches of the Purkinje dendrite, but the terminal branches were devoid of stain. Granule cell dendrites were well stained in their initial portions but devoid of stain in their terminal dendritic digits which form part of the cerebellar glomeruli. In contrast to the unstained granule cell dendritic digits, the central mossy fiber nerve terminal of the glomerulus exhibited intense staining of the mitochondrial profiles and of synaptic vesicles adjacent to the mitochondria. Axons of basket cells showed intense staining in the segments adjacent to the Purkinje cell soma, while terminal twigs of the basket axons in the pinceau surrounding the (unstained) initial segment of the Purkinje axon showed markedly decreased staining intensity. These results indicate that there may be substantial variation in hexokinase levels between the various regions of neuronal processes. Hexokinase was seen at both cytoplasmic and mitochondrial locations in a variety of cells. It does not appear likely that location of hexokinase can be directly correlated with cell type, i.e., with neurons versus glia.  相似文献   

20.
In weaver mice, mutation of an G-protein inwardly rectifying K+ channel leads to a cerebellar developmental anomaly characterized by granule and Purkinje cell loss and, in addition, degeneration of dopaminergic neurons. To evaluate other deficits, glutamate receptors sensitive to N-methyl-d-aspartate (NMDA) were examined by autoradiography with [3H]MK-801 in 36 brain regions from heterozygous (wv/+) and homozygous (wv/wv) weaver mutants, and compared to wild type (+/+) mice. In wv/+ and wv/wv mutants labelling decreased in cortical regions, septum, hippocampus, subiculum, neostriatum, nucleus accumbens, superior colliculus and in the cerebellar granular layer. The reductions in [3H]MK-801 binding were particularly specific in the cerebellar granular layer of wv/wv mutants, but an ubiquitous altered NMDA receptor topology was revealed in other brain regions. Abnormal developmental signals, or aberrant cellular responses, may underlie widespread NMDA receptor reductions, while in cerebellar cortex they could be lacking due to the massive loss of cerebellar granule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号