首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using chimeric human epidermal reconstructs, we previously demonstrated that epidermal pigmentation is dependent upon the phototype of melanocytes. We report here several lines of experimental evidence for dermal modulation of human epidermal pigmentation. First, phototype II-III epidermal reconstructs grafted on the back of immunotolerant Swiss nu/nu mice developed a patchy pigmentation dependent on the presence of colonizing human or mouse fibroblasts. Similarly, human white Caucasoid split-thickness skin xenografted on the same mouse strain became black within 3 months and histochemistry revealed a phototype VI pattern of melanin distribution. In vitro, human fibroblasts colonizing human dead de-epidermized dermis (DDD) induced a decrease in epidermal pigmentation whereas mouse (Swiss nu/nu) fibroblasts increased epidermal pigmentation. Conditioned medium from mice (Swiss nu/nu) fibroblasts also increased pigmentation whereas conditioned medium from human fibroblasts had no significant effect. Lastly, epidermal reconstructs made with normal or vitiligo keratinocytes and/or normal or vitiligo melanocytes from the same donor grown on DDD originating from several donors of the same clinical phototype did not pigment similarly and no specific dermal influence was noted for vitiligo. Thus, fibroblast secretion and acellular dermal connective tissue itself significantly influence melanocyte proliferation and melanin distribution/degradation. Our study suggests that murine fibroblasts are more potent than human fibroblasts in secreting soluble factors which can act directly on pigmentation, such as SCF, or activate keratinocytes to produce basement membrane proteins or melanogenic factors.  相似文献   

3.
The skin of Japanese monkeys (Macaca fuscata) shows diffuse discolorations resembling human dermal melanocytosis. Very few laboratory animals have melanocytes in the dermis. The purpose of this study was to clarify the dermatologic characteristics of Japanese monkeys in terms of gross appearance, skin color, and histopathologic findings. A colorimeter was used to record the skin colors of pigmented and nonpigmented sites. Tissue specimens obtained from both types of sites were examined histopathologically. All animals examined had pigmented sites on their bodies, and the discolorations extended over 25% to 33% of the body surface. The colorimeter could detect differences in skin color due to dermal melanocytosis. All parameters of the colorimetric systems used (Yxy, L*a*b*, and L*C*h* systems) demonstrated significant differences between pigmented and nonpigmented sites. In pigmented sites, the epidermis lacked melanocytes, but the dermis had numerous melanocytes with abundant melanin. Activated melanocytes with well-developed dendrites were distributed throughout the upper part of the dermal layer. Melanocytes were not arranged in clusters, and elastic and collagen fibers in the dermis showed no histological abnormalities. Nonpigmented sites lacked melanin granules in both the epidermis and dermis. This study revealed that gross dermal melanocytosis correlated well with colorimetric results and histopathologic findings. These findings suggest that the pigmentation of Japanese monkeys is equivalent to dermal melanocytosis in humans, to the end that Japanese monkeys may be a useful animal model for investigating dermal melanogenesis.  相似文献   

4.

Background

The clinical and histologic appearance of fibrosis in cutaneous lesions in chronic graft-versus -host disease (c-GVHD) resembles the appearance of fibrosis in scleroderma (SSc). Recent studies identified distinctive structural changes in the superficial dermal microvasculature and matrix of SSc skin. We compared the dermal microvasculature in human c-GVHD to SSc to determine if c-GVHD is a suitable model for SSc.

Methodology/Principal Findings

We analyzed skin biopsies of normal controls (n = 24), patients with SSc (n = 30) and c-GVHD with dermal fibrosis (n = 133)). Immunostaining was employed to identify vessels, vascular smooth muscle, dermal matrix, and cell proliferation. C-GVHD and SSc had similar dermal matrix composition and vascular smooth muscle pathology, including intimal hyperplasia. SSc, however, differed significantly from c-GVHD in three ways. First, there were significantly fewer (p = 0.00001) average vessels in SSc biopsies (9.8) when compared with c-GVHD (16.5). Second, in SSc, endothelial markers were decreased significantly (19/19 and 12/14 for VE cadherin and vWF (p = <0.0001 and <0.05), respectively). In contrast, 0/13 c-GVHD biopsies showed loss of staining with canonical endothelial markers. Third, c-GVHD contained areas of microvascular endothelial proliferation not present in the SSc biopsies.

Conclusions/Significance

The sclerosis associated with c-GVHD appears to resemble wound healing. Focal capillary proliferation occurs in early c-GVHD. In contrast, loss of canonical endothelial markers and dermal capillaries is seen in SSc, but not in c-GVHD. The loss of VE cadherin in SSc, in particular, may be related to microvascular rarefaction because VE cadherin is necessary for angiogenesis. C-GVHD is a suitable model for studying dermal fibrosis but may not be applicable for studying the microvascular alterations characteristic of SSc.  相似文献   

5.
Human melanocytes in monolayer culture are extremely dependent on a wide range of soluble signals for their proliferation and melanogenesis. The advent of three-dimensional models of reconstructed skin allows one to ask questions of how these cells are regulated within a setting which more closely approximates normal skin. The purpose of this study was to investigate to what extent melanocytes within a reconstructed skin model are sensitive to regulation by dermal fibroblasts, basement membrane (BM) proteins and the addition of alpha-melanocyte-stimulating hormone (alpha-MSH). Sterilized acellular de-epidermized dermis (prepared to retain BM proteins or deliberately denuded of BM by enzymatic treatment) from skin type I or II was reconstituted with fibroblasts, melanocytes and keratinocytes. In all but one case (9/10), cell donors were skin type I or II. The presence of BM antigens was found to be necessary for positional orientation of the melanocytes; in the absence of BM, melanocytes moved into the upper keratinocyte layer pigmenting spontaneously. Addition of fibroblasts suppressed the extent of spontaneous pigmentation of melanocytes within this model. Neither alpha-MSH nor cholera toxin induced pigmentation in this model despite the fact that melanocytes clearly had the ability to synthesize pigment.  相似文献   

6.
Reconstituted 3-dimensional human skin equivalents containing melanocytes and keratinocytes on an artificial dermal substitute are gaining popularity for studies of skin metabolism because they exhibit morphological and growth characteristics similar to human epidermis. In this study, we show that such a pigmented epidermis model can be used to assess the regulation of pigmentation by known melanogenic compounds. In monolayers or in melanocyte-keratinocyte co-cultures, melanocyte-keratinocyte interactions are missing or are spatially limited. The commercial skin equivalents used in this study were derived from epidermal cells obtained from donors of three different ethnic origins (African- American, Asian, and Caucasian), and they reflect those distinct skin phenotypes. We used these pigmented human epidermis models to test compounds for potential effects on pigmentation in a more physiologically relevant context, which allows further characterization and validation of interesting melanogenic factors. We used known melanogenic stimulators (alpha-melanocyte-stimulating hormone and 3,4-dihydroxyphenylalanine) and inhibitors (hydroquinone, arbutin, kojic acid, and niacinamide) and examined their effects on the production of melanin and its distribution in upper layers of the skin. Our studies indicate that commercial skin equivalents provide a convenient and cost-effective alternative to animal testing for evaluating the regulation of mammalian pigmentation by melanogenic factors and for elucidating their mechanisms of action.  相似文献   

7.
Song SY  Jung JE  Jeon YR  Tark KC  Lew DH 《Cytotherapy》2011,13(3):378-384
Background aimsAdipose-derived stem cells (ASC) are known to be able to restore injured tissue via differentiation and paracrine effects. In this study, we investigated the effect of ASC on photo-aged human dermal fibroblasts (HDF) based on paracrine function. In particular, we wanted to determine a more effective method of ASC application and the fate of the photo-aged fibroblasts.MethodsWe compared two application methods of ASC: transwell and conditioned medium culture with photo-aged fibroblasts. Proliferation rate, collagen synthesis, matrix metalloproteinase (MMP) production and expression of p16 were measured by real-time polymerase chain reaction (PCR) after culture. Flow cytometry for apoptosis assay was also conducted to determine the fate of the photo-aged fibroblasts.ResultsASC induced proliferation of photo-aged HDF and type I collagen production and decreased MMP-1 production and expression of p16. In an apoptosis assay, ASC converted necrotic or late apoptotic cells to early apoptotic cells. These results were similar in both experimental groups.ConclusionsThe results indicate that the paracrine effects of ASC may have a role that is as important as cell-to-cell communication between ASC and fibroblasts. We believe that conditioned medium may be a useful material for anti-aging skin therapy instead of cell therapy. Also, ASC might have an anti-aging effect on photo-aged fibroblasts even at a genetic level.  相似文献   

8.

Introduction

Pressure ulcers are a prevalent health problem in today''s society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice.

Material and Methods

Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22) were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6) was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH) techniques. The pressure ulcer group (n = 12) was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis.

Results

Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III) in all cases. Complete repair occurred after 40 days.

Conclusions

An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.  相似文献   

9.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

10.
Fibroblasts can be collected from deceased individuals, grown in culture, reprogrammed into induced pluripotent stem cells (iPSCs), and then differentiated into a multitude of cell types, including neurons. Past studies have generated iPSCs from somatic cell biopsies from either animal or human subjects. Previously, fibroblasts have only been successfully cultured from postmortem human skin in two studies. Here we present data on fibroblast cell cultures generated from 146 scalp and/or 53 dura mater samples from 146 postmortem human brain donors. In our overall sample, the odds of successful dural culture was almost two-fold compared with scalp (OR = 1.95, 95% CI: [1.01, 3.9], p = 0.047). Using a paired design within subjects for whom both tissues were available for culture (n = 53), the odds of success for culture in dura was 16-fold as compared to scalp (OR = 16.0, 95% CI: [2.1–120.6], p = 0.0007). Unattended death, tissue donation source, longer postmortem interval (PMI), and higher body mass index (BMI) were associated with unsuccessful culture in scalp (all p<0.05), but not in dura. While scalp cells proliferated more and grew more rapidly than dura cells [F (1, 46) = 12.94, p<0.008], both tissues could be generated and maintained as fibroblast cell lines. Using a random sample of four cases, we found that both postmortem scalp and dura could be successfully reprogrammed into iPSC lines. Our study demonstrates that postmortem dura mater, and to a lesser extent, scalp, are viable sources of living fibroblasts for culture that can be used to generate iPSCs. These tissues may be accessible through existing brain tissue collections, which is critical for studying disorders such as neuropsychiatric diseases.  相似文献   

11.
Understanding pigmentation regulations taking into account the original skin color type is important to address pigmentary disorders. Biological models including adult melanocytes from different phenotypes allow to perform fine-tuned explorative studies and support discovery of treatments adapted to populations' skin color. However, technical challenges arise when trying to not only isolate but also amplify melanocytes from highly pigmented adult skin. To bypass the initial isolation and growth of cutaneous melanocytes, we harvested and expanded fibroblasts from light and dark skin donors and reprogrammed them into iPSC, which were then differentiated into melanocytes. The resulting melanocyte populations displayed high purity, genomic stability, and strong proliferative capacity, the latter being a critical parameter for dark skin cells. The iPSC-derived melanocyte strains expressed lineage-specific markers and could be successfully integrated into reconstructed skin equivalent models, revealing pigmentation status according to the native phenotype. In both monolayer cultures and 3D skin models, the induced melanocytes demonstrated responsiveness to promelanogenic stimuli. The data demonstrate that the iPSC-derived melanocytes with high proliferative capacity maintain their pigmentation genotype and phenotypic properties up to a proper integration into 3D skin equivalents, even for highly pigmented cells.  相似文献   

12.
Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These results demonstrate that IPF fibroblasts exhibit global differences in DNA methylation that may contribute to the excessive fibroproliferation associated with this disease.  相似文献   

13.
miRNAs are key regulatory small non-coding RNAs involved in critical steps of melanoma tumorigenesis; however, the relationship between sequence specific variations at the 5′ or 3′ termini (isomiR) of a miRNA and cancer phenotype remains unclear. Deep-sequencing and qRT-PCR showed reduced expression of miR-144/451a cluster and most abundant isomiR (miR451a.1) in dysplastic nevi, in-situ and invasive melanomas compared to common nevi and normal skin (n = 101). miRNA in situ hybridization reproducibly confirmed lost miR-451a.1 in melanoma compared to nevus cells or adjacent keratinocytes. Significantly higher expression of miR-451a.1 was associated with amelanotic phenotype in melanomas (n = 47). In contrast, miR-451a was associated with melanotic phenotype, absent pagetoid scatter of intraepidermal melanocytes, superficial spreading histological subtype and tumor inflammation. Sequencing miRNAs from cultured melanocytes with cytoplasmic melanin gradient (light, medium to dark) showed absent miR-451a while revealing other melanin-associated miRNAs, e.g. miR-30b, miR-100 and miR-590 in darkly and let-7a, let-7i and let-7f in lightly to moderately pigmented cultured melanocytes. Ectopic expression of miR-144/451a in melanoma cell lines resulted in markedly higher levels of mature miR-451a.1 than miR451a or miR-144; and significantly retarded cell migration and inhibited invasion in a glucose-sensitive manner. Surprisingly, these effects were not mediated by calcium binding protein 39 (CAB39), a proven miR451a gene target. miR-144/miR-451a cluster is a novel miRNA locus with tumor suppressive activity in melanoma.  相似文献   

14.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co-cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono-cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono- and co-cultures. Removing certain keratinocyte growth factors from the co-culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte-melanocyte co-cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB-induced pigmentation, (ii) UVA-induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV-induced pigmentation in vitro.  相似文献   

15.
The cornea is a transparent structure that permits the refraction of light into the eye. Evidence from a range of studies indicates that central corneal thickness (CCT) is strongly genetically determined. Support for a genetic component comes from data showing significant variation in CCT between different human ethnic groups. Interestingly, these studies also appear to show that skin pigmentation may influence CCT. To validate these observations, we undertook the first analysis of CCT in an oculocutaneous albinism (OCA) and Ugandan cohort, populations with distinct skin pigmentation phenotypes. There was a significant difference in the mean CCT of the OCA, Ugandan and Australian-Caucasian cohorts (Ugandan: 517.3±37 µm; Caucasian: 539.7±32.8 µm, OCA: 563.3±37.2 µm; p<0.001). A meta-analysis of 53 studies investigating the CCT of different ethnic groups was then performed and demonstrated that darker skin pigmentation is associated with a thinner CCT (p<0.001). To further verify these observations, we measured CCT in 13 different inbred mouse strains and found a significant difference between the albino and pigmented strains (p = 0.008). Specific mutations within the melanin synthesis pathway were then investigated in mice for an association with CCT. Significant differences between mutant and wild type strains were seen with the nonagouti (p<0.001), myosin VA (p<0.001), tyrosinase (p = 0.025) and tyrosinase related protein (p = 0.001) genes. These findings provide support for our hypothesis that pigmentation is associated with CCT and identifies pigment-related genes as candidates for developmental determination of a non-pigmented structure.  相似文献   

16.
The protective role of the skin is provided by the two major compartments of the skin, dermis and epidermis. Both are affected in the long term by consequences of sun exposure such as skin photoaging and cancer development. Characterization of UV-induced skin response at cellular and molecular levels is needed for prevention or correction of these long term effects. The human skin reconstructed in vitro, comprising both a living dermal equivalent and a fully differentiated epidermis represents a predictive tool to characterize wavelength and cell type specific biological damage together with tissular distribution. While UVB directly affects epidermis, inducing DNA lesions and apoptotic sunburn keratinocytes, UVA radiation can directly target the dermal compartment through ROS generation, dermal fibroblasts alterations and extracellular matrix (ECM) modifications. Interactions between the two compartments have also been found, especially for MMP1 induction. In the normal population, photodamage can be repaired through specialized systems. Using skin cells from Xeroderma pigmentosum (XP, a photosensitive and cancer-prone disease), a DNA-repair deficient skin has been developed in vitro. Specific features due to intrinsic XP cell phenotype have been discovered, some of them being indicative of early steps of neoplasia and suggesting a particular role for stroma-epithelium interactions. Finally, human reconstructed skin can be used for approaches designed to regenerate photodamaged skin. The dermal-epidermal junction (DEJ), which is crucial for skin cohesion, is drastically altered in photo-aged skin. The three-dimensional skin model allowed to visualize the improving effects of vitamin C on the DEJ. Modified skin models, lacking one cell type, allowed us to determine the cellular origin of the different markers, their spatial localization, and the respective roles and interactions of keratinocytes and fibroblasts during DEJ formation. All together these studies give a global and tissular view concerning the effects of UV light on skin cells and emphazise the interest of such models for general aspects of cellular biology. By allowing the control of cells used to reconstruct the model and their origin, these studies make it possible to assess the respective role of the two major cellular actors of the skin as well as their interactions. Ongoing research about incorporating other cell types may certainly give rise to even more relevant models.  相似文献   

17.
We have conducted a multistage genomewide association study, using 1,620,742 single-nucleotide polymorphisms to systematically investigate the genetic factors influencing intrinsic skin pigmentation in a population of South Asian descent. Polymorphisms in three genes—SLC24A5, TYR, and SLC45A2—yielded highly significant replicated associations with skin-reflectance measurements, an indirect measure of melanin content in the skin. The associations detected in these three genes, in an additive manner, collectively account for a large fraction of the natural variation of skin pigmentation in a South Asian population. Our study is the first to interrogate polymorphisms across the genome, to find genetic determinants of the natural variation of skin pigmentation within a human population.  相似文献   

18.
We have examined the quantity and composition of melanin in both photoprotected (volar upper arm) and chronically photoexposed (dorsal forearm) skin from a range of different ethnic skin types including African, Indian, Mexican, Chinese and European. The most lightly pigmented (European, Chinese and Mexican) skin types have approximately half as much epidermal melanin as the most darkly pigmented (African and Indian) skin types. However, the composition of melanin in these lighter skin types is comparatively more enriched with lightly coloured, alkali-soluble melanin components (up to three-fold). Regardless of ethnicity, epidermal melanin content is significantly greater in chronically photoexposed skin than it is in corresponding photoprotected skin (up to two-fold). However, by comparison there is only a modest enrichment of lightly coloured, alkali soluble melanin components in photoprotected skin (up to 1.3-fold). Analysis of melanosomes extracted from the epidermis in these subjects indicates that the proportion of spheroidal melanosomes is low in all skin types examined (<10%). This suggests that in human skin, pheomelanin is a very minor component of epidermal melanin, even in the lightest (European) skin types. Analysis of melanosome size revealed a significant and progressive variation in size with ethnicity: African skin having the largest melanosomes followed in turn by Indian, Mexican, Chinese and European. On the basis of these findings, we propose that variation in skin pigmentation is strongly influenced by both the amount and the composition (or colour) of the melanin in the epidermis. Variation in melanosome size may also play a significant role. However, the data also suggest that in human skin there are subtle differences in the mechanisms associated with the maintenance of constitutive pigmentation and facultative hyperpigmentation, respectively.  相似文献   

19.
Objective in situ measurements of skin pigmentation are needed for accurate documentation of pigmentation disorders, in studies of constitutive and induced skin pigmentation, for testing of the efficacy of pro‐pigmentation or de‐pigmentation agents, etc. Non‐invasive instrumental measurements of skin pigmentation have been used for many decades. All are based on the ability of melanin to attenuate light. However, hemoglobin in dermal capillaries also attenuates light and needs to be accounted for when pigmentation is assessed. The methods under consideration include: (a) single point measurements, in which light reflected from a defined skin area is collected and a pigment index is calculated representing the average pigmentation over the examined area, and (b) imaging methods that attempt to generate a concentration distribution map of melanin pigment for the skin area being imaged. In this article, we describe the potentials and the limitations of the different approaches to both single point and imaging methods.  相似文献   

20.
Non-invasive measurements of skin pigmentation in situ   总被引:3,自引:0,他引:3  
Objective in situ measurements of skin pigmentation are needed for accurate documentation of pigmentation disorders, in studies of constitutive and induced skin pigmentation, for testing of the efficacy of pro-pigmentation or de-pigmentation agents, etc. Non-invasive instrumental measurements of skin pigmentation have been used for many decades. All are based on the ability of melanin to attenuate light. However, hemoglobin in dermal capillaries also attenuates light and needs to be accounted for when pigmentation is assessed. The methods under consideration include: (a) single point measurements, in which light reflected from a defined skin area is collected and a pigment index is calculated representing the average pigmentation over the examined area, and (b) imaging methods that attempt to generate a concentration distribution map of melanin pigment for the skin area being imaged. In this article, we describe the potentials and the limitations of the different approaches to both single point and imaging methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号