首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Loss of intestinal CD4+ T cells was associated with decreased production of several T-helper 1 (TH1) and TH2 cytokines and increased production of interleukin 17 (IL-17), gamma interferon (IFN-γ), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by CD8+ T cells 21 days after simian immunodeficiency virus (SIV) infection in rhesus macaques. Shifting of mucosal TH1 to TH2 or T-cytotoxic 1 (TC1) to TC2 cytokine profiles was not evident. Additionally, both CD4+ and CD8+ T cells showed upregulation of macrophage migration inhibition factor (MIF) and basic fibroblast growth factor (FGF-basic) cytokines that have been linked to HIV disease progression.  相似文献   

3.
4.
5.
Chang JH  Cha HR  Lee DS  Seo KY  Kweon MN 《PloS one》2010,5(9):e12925

Background

Vitamin D3, the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D3 ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE); however, the direct effect of vitamin D3 on T cells is largely unknown.

Methodology/Principal Findings

In an in vitro system using cells from mice, the active form of vitamin D3 (1,25-dihydroxyvitamin D3) suppresses both interleukin (IL)-17-producing T cells (TH17) and regulatory T cells (Treg) differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce the amount of IL-2 regulates the generation of Treg cells, but not TH17 cells. Under TH17-polarizing conditions, 1,25(OH)2D3 helps to increase the numbers of IL-10-producing T cells, but 1,25(OH)2D3''s negative regulation of TH17 development is still defined in the IL-10−/− T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH)2D3 inhibits IL-17 production in STAT1−/− T cells. Most interestingly, 1,25(OH)2D3 negatively regulates CCR6 expression which might be essential for TH17 cells to enter the central nervous system and initiate EAE.

Conclusions/Significance

Our present results in an experimental murine model suggest that 1,25(OH)2D3 can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for TH17-mediated autoimmune diseases.  相似文献   

6.
7.
8.
9.
Leukotriene B4 (LTB4) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB4. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and TH1/TH17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1−/− mice had delayed onset and less severe symptoms of EAE than BLT1+/+ mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1+/+, but not BLT1−/− mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-γ, TNF-α, IL-17 and IL-6 were impaired in BLT1−/− cells, as compared with BLT1+/+ cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and TH1/TH17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other TH17-mediated diseases.  相似文献   

10.
Following thymic output, αβ+CD4+ T cells become activated in the periphery when they encounter peptide–major histocompatibility complex. A combination of cytokine and co-stimulatory signals instructs the differentiation of T cells into various lineages and subsequent expansion and contraction during an appropriate and protective immune response. Our understanding of the events leading to T-cell lineage commitment has been dominated by a single fate model describing the commitment of T cells to one of several helper (TH), follicular helper (TFH) or regulatory (TREG) phenotypes. Although a single lineage-committed and dedicated T cell may best execute a single function, the view of a single fate for T cells has recently been challenged. A relatively new paradigm in αβ+CD4+ T-cell biology indicates that T cells are much more flexible than previously appreciated, with the ability to change between helper phenotypes, between helper and follicular helper, or, most extremely, between helper and regulatory functions. In this review, we comprehensively summarize the recent literature identifying when TH or TREG cell plasticity occurs, provide potential mechanisms of plasticity and ask if T-cell plasticity is beneficial or detrimental to immunity.  相似文献   

11.
《Cytokine》2011,53(3):265-273
Syngeneic graft-versus-host disease (SGVHD) develops following lethal irradiation, reconstitution with syngeneic bone marrow (BM) and treatment with a 21 day course of the immunosuppressive agent cyclosporine A (CsA). Clinical symptoms of SGVHD appear 2–3 weeks post-CsA with inflammation occurring in the colon and liver. Previously we have demonstrated that CD4+ T cells and a T helper cell type 1 cytokine response (TH1) are involved in the development of SGVHD associated intestinal inflammation. Studies have recently discovered an additional T cell lineage that produces IL-17 and is termed TH17. It has been suggested that inflammatory bowel disease is a result of a TH17 response rather than a TH1 response. This study was designed to investigate TH17 involvement in SGVHD-associated colitis. Following induction of SGVHD, the levels of TH17 and TH1 cytokine mRNA and protein were measured in control and SGVHD animals. In vivo cytokine neutralization was performed to determine the role of the prototypic TH17 cytokine, IL-17, in the disease process. We found that during CsA-induced murine SGVHD there was an increase in both TH17 and TH1 mRNA and cytokines within the colons of diseased mice. The administration of an anti-mouse IL-17A mAb did not alter the course of disease. However, neutralization of IL-17A resulted in an increased production of IL-17F, a related family member, with an overlapping range of effector activities. These results demonstrate that in the pathophysiology of SGVHD, there is a redundancy in the TH17 effector molecules that mediate the development of SGVHD.  相似文献   

12.
There is heterogeneity in invariant natural killer T (iNKT) cells based on the expression of CD4 and the IL-17 receptor B (IL-17RB), a receptor for IL-25 which is a key factor in TH2 immunity. However, the development pathway and precise function of these iNKT cell subtypes remain unknown. IL-17RB+ iNKT cells are present in the thymic CD44+/− NK1.1 population and develop normally even in the absence of IL-15, which is required for maturation and homeostasis of IL-17RB iNKT cells producing IFN-γ. These results suggest that iNKT cells contain at least two subtypes, IL-17RB+ and IL-17RB subsets. The IL-17RB+ iNKT subtypes can be further divided into two subtypes on the basis of CD4 expression both in the thymus and in the periphery. CD4+ IL-17RB+ iNKT cells produce TH2 (IL-13), TH9 (IL-9 and IL-10), and TH17 (IL-17A and IL-22) cytokines in response to IL-25 in an E4BP4-dependent fashion, whereas CD4 IL-17RB+ iNKT cells are a retinoic acid receptor-related orphan receptor (ROR)γt+ subset producing TH17 cytokines upon stimulation with IL-23 in an E4BP4-independent fashion. These IL-17RB+ iNKT cell subtypes are abundantly present in the lung in the steady state and mediate the pathogenesis in virus-induced airway hyperreactivity (AHR). In this study we demonstrated that the IL-17RB+ iNKT cell subsets develop distinct from classical iNKT cell developmental stages in the thymus and play important roles in the pathogenesis of airway diseases.  相似文献   

13.
Peripheral CD4+CD8+ T cells have been identified as a T cell subset existing in animals and humans. However, the characterization of CD4+CD8+ T cells, their relationship with T memory (TM), T effector (TE), Th1/Th2, Treg and Th-17, remain unclear. This study was to characterize the CD4+CD8+ T cells. The results from human subjects showed that activated T cells were CD4+CD8+ T cells, comprised CD4hiCD8lo, CD4hiCD8hi and CD4loCD8hi subsets. They expressed CD62Lhi/lo, granzyme B (GrB), CD25, Foxp3, interleukin 17 (IL-17) and the cytokines of both Th1 and Th2, and had cytolytic function. These findings suggested that CD4+CD8+ T cells had over-lap function while they kept diversity, and that T cells could be divided into two major populations: activated and inactivated. Hence, the hypotheses of Th1/Th2, Treg and Th-17 might reflect the positive/negative feedback regulation of immune system. When compared to GrB+CD62Llo T effector (TE) cells, GrB+CD62Lhi T central memory effector (TCME) cells had a quicker response to virus without CD62L loss.  相似文献   

14.
15.
Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88-dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CD11bhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF-β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.  相似文献   

16.
The immunological hallmarks of infection with parasitic belmintbs, namely eosinophilia, mastocytosis and increased IgE synthesis, all appear to be induced by cytokines from the TH2 subset of CD4+ T cells: IgE production is stimulated by interleukin 4 (IL-4), eosinophilia by IL-5 and mastocytosis by IL-3 and IL-4. Here, Fred Finkelman and colleagues argue that the functional significance of the eosinophilia-mastocytosis-IgE axis in helminth infection is unclear and suggest that in some worm infections TH2-cell cytokines may contribute to host protection, while in others they may promote parasite survival.  相似文献   

17.
The magnitude and durability of a plasmid DNA vaccine-induced immune response is shaped by immune effector molecules at the site of vaccination. In the present study, we show that antigen expression is modified by type II NKT cells, after interaction with a β2-microglobulin-independent CD1d receptor. After activation, during the first days following plasmid DNA vaccination, NKT cells release IL-5 and MCP-1, leading to a T helper 0 (TH0) cytokine/chemokine profile and a stronger CD8+/CD4+ T cell immune response. Our data indicate that this phenomenon was induced through the strong TH1 chemokine MCP-1 during the early phases of plasmid DNA vaccination because injecting the type II NKT cell-associated MCP-1 during the first 5 days led to 2–3-fold increases in vaccine-elicited T cell responses. This study demonstrates a critical role for NKT cells in plasmid DNA vaccine-induced immune responses. Manipulation of NKT cell function or co-administration of MCP-1 may represent novel methods for enhancing immune responses to plasmid DNA vaccines.  相似文献   

18.
19.
Differentiation of naïve CD4+ cells into functionally distinct effector helper T cell subsets, characterised by distinct “cytokine signatures,” is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the TH1/TH2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号