首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following infection of mice with lymphocytic choriomeningitis virus (LCMV), virus-neutralizing antibodies appear late, after 30 to 60 days. Such neutralizing antibodies play an important role in protection against reinfection. To analyze whether a neutralizing antibody response which developed earlier could contribute to LCMV clearance during the acute phase of infection, we generated transgenic mice expressing LCMV-neutralizing antibodies. Transgenic mice expressing the immunoglobulin μ heavy chain of the LCMV-neutralizing monoclonal antibody KL25 (H25 transgenic mice) mounted LCMV-neutralizing immunoglobulin M (IgM) serum titers within 8 days after infection. This early inducible LCMV-neutralizing antibody response significantly improved the host’s capacity to clear the infection and did not cause an enhancement of disease after intracerebral (i.c.) LCMV infection. In contrast, mice which had been passively administered LCMV-neutralizing antibodies and transgenic mice exhibiting spontaneous LCMV-neutralizing IgM serum titers (HL25 transgenic mice expressing the immunoglobulin μ heavy and the κ light chain) showed an enhancement of disease after i.c. LCMV infection. Thus, early-inducible LCMV-neutralizing antibodies can contribute to viral clearance in the acute phase of the infection and do not cause antibody-dependent enhancement of disease.Against many cytopathic viruses such as poliovirus, influenza virus, rabies virus, and vesicular stomatitis virus, protective virus-neutralizing antibodies are generated early, within 1 week after infection (3, 31, 36, 44, 49). In contrast, several noncytopathic viruses (e.g., human immunodeficiency virus and hepatitis viruses B and C in humans or lymphocytic choriomeningitis virus [LCMV] in mice) elicit poor and delayed virus-neutralizing antibody responses (1, 7, 20, 24, 27, 35, 45, 48).In the mouse, the natural host of LCMV, the acute LCMV infection is predominantly controlled by cytotoxic T lymphocytes (CTLs) in an obligatory perforin-dependent manner (13, 18, 28, 50). In addition to the CTL response, LCMV-specific antibodies are generated. Early after infection (by day 8), a strong antibody response specific for the internal viral nucleoprotein (NP) is mounted (7, 19, 23, 28). These early LCMV NP-specific antibodies exhibit no virus-neutralizing capacity (7, 10). Results from studies of B-cell-depleted mice and B-cell-deficient mice implied that the early LCMV NP-specific antibodies are not involved in the clearance of LCMV (8, 11, 12, 40). Late after infection (between days 30 and day 60), LCMV-neutralizing antibodies develop (7, 19, 22, 28, 33); these antibodies are directed against the surface glycoprotein (GP) of LCMV (9, 10). LCMV-neutralizing antibodies have an important function in protection against reinfection (4, 6, 38, 41, 47).In some viral infections, subprotective virus-neutralizing antibody titers can enhance disease rather than promote host recovery (i.e., exhibit antibody-dependent enhancement of disease [ADE] [14, 15, 21, 46]). For example, neutralizing antibodies are involved in the resolution of a primary dengue virus infection and in the protection against reinfection. However, if subprotective neutralizing antibody titers are present at the time of reinfection, a severe form of the disease (dengue hemorrhagic fever/dengue shock syndrome [15, 21]), which might be caused by Fc receptor-mediated uptake of virus-antibody complexes leading to an enhanced infection of monocytes (15, 16, 25, 39), can develop. Similarly, an enhancement of disease after intracerebral (i.c.) LCMV infection was observed in mice which had been treated with virus-neutralizing antibodies before the virus challenge (6). ADE in LCMV-infected mice was either due to an enhanced infection of monocytes by Fc receptor-mediated uptake of antibody-virus complexes or due to CTL-mediated immunopathology caused by an imbalanced virus spread and CTL response.To analyze whether LCMV-neutralizing antibodies generated early after infection improve the host’s capacity to clear the virus or enhance immunopathological disease, immunoglobulin (Ig)-transgenic mice expressing LCMV-neutralizing IgM antibodies were generated. After LCMV infection of transgenic mice expressing the Ig heavy chain (H25 transgenic mice), LCMV-neutralizing serum antibodies were mounted within 8 days, which significantly improved the host’s capacity to eliminate LCMV. H25 transgenic mice did not show any signs of ADE after i.c. LCMV infection.Transgenic mice expressing the Ig heavy and light chains (HL25 transgenic mice) exhibited spontaneous LCMV-neutralizing serum antibodies and confirmed the protective role of preexisting LCMV-neutralizing antibodies, even though the neutralizing serum antibodies were of the IgM isotype. Similar to mice which had been treated with LCMV-neutralizing antibodies, HL25 transgenic mice developed an enhanced disease after i.c. LCMV infection, which indicated that ADE was due to an imbalance between virus spread and CTL response. Thus, the early-inducible LCMV-neutralizing antibody response significantly enhanced clearance of the acute infection without any risk of causing ADE.  相似文献   

2.
The discovery of novel early detection biomarkers of disease could offer one of the best approaches to decrease the morbidity and mortality of ovarian and other cancers. We report on the use of a single-chain variable fragment antibody library for screening ovarian serum to find novel biomarkers for the detection of cancer. We alternately panned the library with ovarian cancer and disease-free control sera to make a sublibrary of antibodies that bind proteins differentially expressed in cancer. This sublibrary was printed on antibody microarrays that were incubated with labeled serum from multiple sets of cancer patients and controls. The antibodies that performed best at discriminating disease status were selected, and their cognate antigens were identified using a functional protein microarray. Overexpression of some of these antigens was observed in cancer serum, tumor proximal fluid, and cancer tissue via dot blot and immunohistochemical staining. Thus, our use of recombinant antibody microarrays for unbiased discovery found targets for ovarian cancer detection in multiple sample sets, supporting their further study for disease diagnosis.Despite many advances in the treatment of cancer, early detection and tumor removal remains the best prospect for overcoming disease. Ovarian cancer is an excellent example of the potential prognostic value of early detection because diagnosis at a localized stage has a 5-year survival rate of 93%. However, only 19% of cases are diagnosed at this stage, and by the time the disease has evolved to an advanced stage, the 5-year survival rate drops to 31% (1).Much effort has been expended to find early detection markers of ovarian cancer, and some success has been achieved. Most notable is CA125, the only approved marker for the detection of recurrence of ovarian cancer (2). Other leading targets are mesothelin and HE4, which have been examined by several groups for their efficacy as early detection markers (38). Nevertheless, several conditions necessitate the discovery of more specific and sensitive ovarian cancer markers: the heterogeneity of this disease, the ambiguity of its symptoms, its low incidence in the general population, and the low sensitivity and specificity of currently available markers.One of the difficulties in finding markers in blood is the complexity of the plasma/serum proteome, estimated in the tens to hundreds of thousands of proteins, as well as its large range in constituent protein concentrations, which can span 12 orders of magnitude (9). However, along with its easy accessibility, the fact that blood is in contact with virtually every tissue and contains tissue- and tumor-derived proteins makes it a preferred source for disease biomarker discovery.Our previous results (10, 11) and those of others (1214) using high density, full-length IgG antibody microarrays to validate and discover cancer serum biomarkers demonstrated that this platform is valuable for simultaneously comparing the levels of hundreds of proteins on dozens of serum samples from cancer patients and healthy controls. We confirmed overexpression of CA125, mesothelin, and HE4 in ovarian cancer samples using this high density microarray platform, validating our array methodology for measurement of cancer serum biomarkers and yielding new putative biomarkers for this disease (10, 11).Previously reported approaches are typically limited to a few hundred antibodies. The methodology reported here allows us to exploit the specific advantages of antibodies as high affinity capture reagents to detect differential expression of thousands of tumor biomarkers using a diverse (2 × 108 binding agents) single-chain variable fragment antibody (scFv)1 library for detection of ovarian cancer markers in serum, tumor cyst fluid, and ascites fluid. Our results build on previous reports of phage display library microarrays to discover autoantibody (1518) and other protein (12, 19, 20) cancer biomarkers. Our scFv are high affinity capture reagents consisting of the variable regions of human antibody heavy and light chains joined by a flexible linker peptide. These recombinant antibodies are able to recognize a wide variety of antigens, including many previously thought difficult, such as self-antigens and proteins that are not normally immunogenic in animals (2124). Using a highly diverse recombinant antibody library, one has the ability to overcome the complexity of the serum proteome. It has been calculated that for an immune repertoire to be complete (at least one antibody in the repertoire has reasonable affinity for every epitope possible in nature) it requires a diversity of at least 106 antibodies (25). The reported diversity of our scFv library exceeds this value by 100-fold (21).To enrich for antibodies that differentiate disease status, we performed a selection or panning of the naïve library for proteins that are differentially expressed in cyst fluid, ascites fluid, or serum of cancer patients with respect to healthy serum. We printed this sublibrary on activated hydrogel slides that were queried with three different sets of labeled case and control sera to further select those that discriminate cancer status in a statistically significant manner. Next, we identified some of the targets that bind to the individual scFv using high density nucleic acid programmable protein arrays (NAPPAs) expressing a total of over 7000 proteins. Finally, we validated the effectiveness of the selection process by confirming overexpression of these targets in cancer serum, cyst fluid, and ascites fluid as well as in tumor sections.  相似文献   

3.
4.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

5.
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (24). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 46). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (914). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (912), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 1518). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples.  相似文献   

6.
7.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

8.
9.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

10.
11.
12.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

13.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

14.
Four new monoclonal antibodies (MAbs) that inhibit human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation were produced by immunizing BALB/c mice with HTLV-1-infected MT2 cells. Immunoprecipitation studies and binding assays of transfected mouse cells showed that these MAbs recognize class II major histocompatibility complex (MHC) molecules. Previously produced anti-class II MHC antibodies also blocked HTLV-1-induced cell fusion. Coimmunoprecipitation and competitive MAb binding studies indicated that class II MHC molecules and HTLV-1 envelope glycoproteins are not associated in infected cells. Anti-MHC antibodies had no effect on human immunodeficiency virus type 1 (HIV-1) syncytium formation by cells coinfected with HIV-1 and HTLV-1, ruling out a generalized disruption of cell membrane function by the antibodies. High expression of MHC molecules suggested that steric effects of bound anti-MHC antibodies might explain their inhibition of HTLV-1 fusion. An anti-class I MHC antibody and a polyclonal antibody consisting of several nonblocking MAbs against other molecules bound to MT2 cells at levels similar to those of class II MHC antibodies, and they also blocked HTLV-1 syncytium formation. Dose-response experiments showed that inhibition of HTLV-1 syncytium formation correlated with levels of antibody bound to the surface of infected cells. The results show that HTLV-1 syncytium formation can be blocked by protein crowding or steric effects caused by large numbers of immunoglobulin molecules bound to the surface of infected cells and have implications for the structure of the cellular HTLV-1 receptor(s).Human T-cell lymphotropic virus type 1 (HTLV-1) is a type C retrovirus and the etiologic agent of adult T-cell leukemia (43, 56, 59) and HTLV-1-associated myelopathy or tropical spastic paraparesis (15, 17, 49, 61). Although HTLV-1 shows tropism primarily for T cells, it can infect a variety of cell types including cells from some nonhuman species (6, 9, 27, 46, 48, 60, 62). Infection by free HTLV-1 tends to be highly inefficient, and the virus appears to be transmitted primarily by the cell-to-cell route (37). The HTLV-1 envelope glycoprotein is synthesized as a 61-kDa precursor which is cleaved into surface (gp46) and transmembrane (gp21) proteins (40, 57). gp46 is thought to serve as the virus attachment protein, as does gp120 for human immunodeficiency virus (HIV) (40, 57). Although previous reports have identified host cell molecules which might potentially mediate virus binding (9, 14), the cellular receptor for HTLV-1 has not been definitively identified. A recent study in which affinity chromatography was carried out with a gp46 peptide has provided evidence that the heat shock protein HSC70 binds directly to gp46 and may serve as a virus receptor (47).gp21 contains an N-terminal hydrophobic fusion domain and likely serves as a fusion protein similar to HIV gp41 (12, 61). Like many other retroviruses, HTLV-1 can induce syncytium formation between infected cells and certain uninfected cell types (28, 39). However, there are no data to indicate that virus transmission or virus persistence in vivo depends on syncytium formation. It is thought that cell-cell fusion involves the same receptors and occurs in a manner similar to virus-cell fusion. For this reason, HTLV-1 syncytium assays have been used to screen for cell surface molecules that may serve as virus receptors (13, 14, 25, 29). Monoclonal antibodies (MAbs) against a number of membrane proteins including members of the tetraspanner family (30, 31) have been found to block syncytium formation. My colleagues and I recently reported that expression of the cell adhesion molecule vascular cell adhesion molecule 1 (VCAM-1) on uninfected cells can confer sensitivity to HTLV-1-mediated syncytium formation (25). In this previous study, we were not able to block HTLV-1 cell fusion with MAbs against the major VCAM-1 counterreceptor VLA-4 (25). Others have reported that MAbs to other adhesion molecules including intercellular adhesion molecule 3 (ICAM-3) also block HTLV-1 syncytium formation (29). We have demonstrated that adhesion molecules also facilitate HIV type 1 (HIV-1) infection and syncytium formation (16, 24). Thus, adhesion molecules may be important accessory molecules for retroviruses generally.Earlier studies on accessory molecules involved in HTLV-1 biology have been extended by immunizing mice with HTLV-1-infected cells and screening for MAbs that block VCAM-1-supported HTLV-1 syncytium formation. Four new MAbs that completely block HTLV-1-mediated cell fusion have been generated. The MAbs were all determined to be specific for class II major histocompatibility complex (MHC) molecules. These MAbs had no effect on syncytium formation induced by HIV-1. Studies on the mechanism by which the MAbs mediate this effect have revealed a novel mode of antibody blockade of virus-induced cell fusion: protein crowding at the infected cell surface resulting in steric blockade of critical receptor-ligand interactions.  相似文献   

15.
We have investigated whether the identity of the coreceptor (CCR5, CXCR4, or both) used by primary human immunodeficiency virus type 1 (HIV-1) isolates to enter CD4+ cells influences the sensitivity of these isolates to neutralization by monoclonal antibodies and CD4-based agents. Coreceptor usage was not an important determinant of neutralization titer for primary isolates in peripheral blood mononuclear cells. We also studied whether dualtropic primary isolates (able to use both CCR5 and CXCR4) were differentially sensitive to neutralization by the same antibodies when entering U87MG-CD4 cells stably expressing either CCR5 or CXCR4. Again, we found that the coreceptor used by a virus did not greatly affect its neutralization sensitivity. Similar results were obtained for CCR5- or CXCR4-expressing HOS cell lines engineered to express green fluorescent protein as a reporter of HIV-1 entry. Neutralizing antibodies are therefore unlikely to be the major selection pressure which drives the phenotypic evolution (change in coreceptor usage) of HIV-1 that can occur in vivo. In addition, the increase in neutralization sensitivity found when primary isolates adapt to growth in transformed cell lines in vitro has little to do with alterations in coreceptor usage.Human immunodeficiency virus type 1 (HIV-1) enters CD4+ T cells via an interaction with CD4 and coreceptor molecules, the most important of which yet identified are the chemokine receptors CXCR4 and CCR5 (4, 12, 23, 26, 28, 32). CXCR4 is used by T-cell line-tropic (T-tropic) primary isolates or T-cell line-adapted (TCLA) lab strains, whereas CCR5 is used by primary isolates of the macrophage-tropic (M-tropic) phenotype (4, 12, 23, 26, 28, 32). Most T-tropic isolates and some TCLA strains are actually dualtropic in that they can use both CXCR4 and CCR5 (and often other coreceptors such as CCR3, Bonzo/STRL33, and BOB/gpr15), at least in coreceptor-transfected cells (18, 24, 30, 54, 89). The M-tropic and T-tropic/dualtropic nomenclature has often been used interchangeably with the terms “non-syncytium-inducing” (NSI) and “syncytium-inducing” (SI), although it is semantically imprecise to do so.M-tropic viruses are those most commonly transmitted sexually (3, 33, 87, 106) and from mother to infant (2, 72, 81). If T-tropic strains are transmitted, or when they emerge, this is associated with a more rapid course of disease in both adults (17, 37, 46, 51, 52, 76, 78, 82, 92, 101) and children (6, 45, 84, 90). However, T-tropic viruses emerge in only about 40% of infected people, usually only several years after infection (76, 78). A well-documented, albeit anecdotal, study found that when a T-tropic strain was transmitted by direct transfer of blood, its replication was rapidly suppressed: the T-tropic virus was eliminated from the body, and M-tropic strains predominated (20). These results suggest that there is a counterselection pressure against the emergence of T-tropic strains during the early stages of HIV-1 infection in most people. But what is this pressure?Since the M-tropic and T-tropic phenotypes are properties mediated by the envelope glycoproteins whose function is to associate with CD4 and the coreceptors, a selection pressure differentially exerted on M- and T-tropic viruses could, in principle, act at the level of virus entry. In other words, neutralizing antibodies to the envelope glycoproteins, or the chemokine ligands of the coreceptors, could theoretically interfere more potently with the interactions of T-tropic strains with CXCR4 than with M-tropic viruses and CCR5. A differential effect of this nature could suppress the emergence of T-tropic viruses. Consistent with this possibility, neutralizing antibodies are capable of preventing the CD4-dependent association of gp120 with CCR5 (42, 94, 103), and chemokines can also prevent the coreceptor interactions of HIV-1 (8, 13, 23, 28, 70).Here, we explore whether the efficiency of HIV-1 neutralization is affected by coreceptor usage. Although earlier studies have not found T-tropic strains to be inherently more neutralization sensitive than M-tropic ones (20, 40, 44), previously available reagents and techniques may not have been adequate to fully address this question. One major problem is that even single residue changes can drastically affect both antibody binding to neutralization epitopes and the HIV-1 phenotype (25, 55, 62, 67, 83, 91), and so studies using relatively unrelated viruses and a fixed antibody (polyclonal or monoclonal) preparation have two variables to contend with: the viral phenotype (coreceptor use) and the antigenic structure of the virus and hence the efficiency of the antibody-virion interaction.We have used a new experimental strategy to explore whether coreceptor usage affects neutralization sensitivity in the absence of other confounding variables: the use of dualtropic viruses able to enter CD4+ cells via either CCR5 or CXCR4. By using a constant HIV-1 isolate or clone and the same monoclonal antibodies (MAbs) or CD4-based reagents as neutralizing agents, we can ensure that the only variable under study in the neutralization reaction is the nature of the coreceptor used for entry. Our major conclusion is that there is no strong association between coreceptor usage and neutralization sensitivity for primary HIV-1 isolates. Independent studies have reached the same conclusion (53a, 59). The emergence of T-tropic (SI) viruses in vivo may be unlikely to be due to escape from antibody-mediated selection pressure.  相似文献   

16.
17.
18.
19.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

20.
There is a mounting evidence of the existence of autoantibodies associated to cancer progression. Antibodies are the target of choice for serum screening because of their stability and suitability for sensitive immunoassays. By using commercial protein microarrays containing 8000 human proteins, we examined 20 sera from colorectal cancer (CRC) patients and healthy subjects to identify autoantibody patterns and associated antigens. Forty-three proteins were differentially recognized by tumoral and reference sera (p value <0.04) in the protein microarrays. Five immunoreactive antigens, PIM1, MAPKAPK3, STK4, SRC, and FGFR4, showed the highest prevalence in cancer samples, whereas ACVR2B was more abundant in normal sera. Three of them, PIM1, MAPKAPK3, and ACVR2B, were used for further validation. A significant increase in the expression level of these antigens on CRC cell lines and colonic mucosa was confirmed by immunoblotting and immunohistochemistry on tissue microarrays. A diagnostic ELISA based on the combination of MAPKAPK3 and ACVR2B proteins yielded specificity and sensitivity values of 73.9 and 83.3% (area under the curve, 0.85), respectively, for CRC discrimination after using an independent sample set containing 94 sera representative of different stages of progression and control subjects. In summary, these studies confirmed the presence of specific autoantibodies for CRC and revealed new individual markers of disease (PIM1, MAPKAPK3, and ACVR2B) with the potential to diagnose CRC with higher specificity and sensitivity than previously reported serum biomarkers.Colorectal cancer (CRC)1 is the second most prevalent cancer in the western world. The development of this disease takes decades and involves multiple genetic events. CRC remains a major cause of mortality in developed countries because most of the patients are diagnosed at advanced stages because of the reluctance to use highly invasive diagnostic tools like colonoscopy. Actually only a few proteins have been described as biomarkers in CRC (carcinoembryonic antigen (CEA), CA19.9, and CA125 (13)), although none of them is recommended for clinical screening (4). Proteomics analysis is actively used for the identification of new biomarkers. In previous studies, the use of two-dimensional DIGE and antibody microarrays allowed the identification of differentially expressed proteins in CRC tissue, including isoforms and post-translational modifications responsible for modifications in signaling pathways (58). Both approaches resulted in the identification of a collection of potential tumoral tissue biomarkers that is currently being investigated.However, the implementation of simpler, non-invasive methods for the early detection of CRC should be based on the identification of proteins or antibodies in serum or plasma (913). There is ample evidence of the existence of an immune response to cancer in humans as demonstrated by the presence of autoantibodies in cancer sera. Self-proteins (autoantigens) altered before or during tumor formation can elicit an immune response (1319). These tumor-specific autoantibodies can be detected at early cancer stages and prior to cancer diagnosis revealing a great potential as biomarkers (14, 15, 20). Tumor proteins can be affected by specific point mutations, misfolding, overexpression, aberrant glycosylation, truncation, or aberrant degradation (e.g. p53, HER2, NY-ESO1, or MUC1 (16, 2125)). In fact, a number of tumor-associated autoantigens (TAAs) were identified previously in different studies involving autoantibody screening in CRC (2628).Several approaches have been used to identify TAAs in cancer, including natural protein arrays prepared with fractions obtained from two-dimensional LC separations of tumoral samples (29, 30) or protein extracts from cancer cells or tissue (9, 31) probed by Western blot with patient sera, cancer tissue peptide libraries expressed as cDNA expression libraries for serological screening (serological analysis of recombinant cDNA expression libraries (SEREX)) (22, 32), or peptides expressed on the surface of phages in combination with microarrays (17, 18, 33, 34). However, these approaches suffer from several drawbacks. In some cases TAAs have to be isolated and identified from the reactive protein lysate by LC-MS techniques, or in the phage display approach, the reactive TAA could be a mimotope without a corresponding linear amino acid sequence. Moreover, cDNA libraries might not be representative of the protein expression levels in tumors as there is a poor correspondence between mRNA and protein levels.Protein arrays provide a novel platform for the identification of both autoantibodies and their respective TAAs for diagnostic purposes in cancer serum patients. They present some advantages. Proteins printed on the microarray are known “a priori,” avoiding the need for later identifications and the discovery of mimotopes. There is no bias in protein selection as the proteins are printed at a similar concentration. This should result in a higher sensitivity for biomarker identification (13, 35, 36).In this study, we used commercially available high density protein microarrays for the identification of autoantibody signatures and tumor-associated antigens in colorectal cancer. We screened 20 CRC patient and control sera with protein microarrays containing 8000 human proteins to identify the CRC-associated autoantibody repertoire and the corresponding TAAs. Autoantibody profiles that discriminated the different types of CRC metastasis were identified. Moreover a set of TAAs showing increased or decreased expression in cancer cell lines and paired tumoral tissues was found. Finally an ELISA was set up to test the ability of the most immunoreactive proteins to detect colorectal adenocarcinoma. On the basis of the antibody response, combinations of three antigens, PIM1, MAPKAPK3, and ACVR2B, showed a great potential for diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号