首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt‐agonistic R‐spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever‐expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1‐based cultures, and develop into budding cyst‐like structures (organoids) that expand five‐fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi‐potentiality.  相似文献   

2.
Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67 cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.  相似文献   

3.
4.
The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12) M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.  相似文献   

5.
The developmental potential of stem cells and progenitor cells must be functionally distinguished to ensure the generation of diverse cell types while maintaining the stem cell pool throughout the lifetime of an organism. In contrast to stem cells, progenitor cells possess restricted developmental potential, allowing them to give rise to only a limited number of post-mitotic progeny. Failure to establish or maintain restricted progenitor cell potential can perturb tissue development and homeostasis, and probably contributes to tumor initiation. Recent studies using the developing fruit fly Drosophila larval brain have provided molecular insight into how the developmental potential is restricted in neural progenitor cells.  相似文献   

6.
Lgr5 is a marker for proliferating stem cells in adult intestine, stomach, and hair follicle. However, Lgr5 is not expressed in adult hematopoietic stem and progenitor cells (HSPCs). Whether Lgr5 is expressed in the embryonic and fetal HSPCs that undergo rapid proliferation is unknown. Here we report the detection of Lgr5 expression in HSPCs in the aorta-gonad-mesonephros (AGM) and fetal liver. We also found that a portion of Lgr5+ cells expressed the Runx1 gene that is critical for the ontogeny of HSPCs. A small portion of Lgr5+ cells also expressed HSPC surface markers c-Kit and CD34 in AGM or CD41 in fetal liver. Furthermore, the majority of Lgr5+ cells expressed Ki67, indicating their proliferating state. Transplantation of fetal liver-derived Lgr5-GFP+ cells (E12.5) demonstrated that Lgr5-GFP+ cells were able to reconstitute myeloid and lymphoid lineages in adult recipients, but the engraftment was short-term (4–8 weeks) and 20-fold lower compared with the Lgr5-GFP control. Our data show that Lgr5-expressing cells mark short-term hematopoietic stem and progenitor cells, consistent with the role of Lgr5 in supporting HSPCs rapid proliferation during embryonic and fetal development.  相似文献   

7.
小肠上皮具有快速更新的能力,是研究成体干细胞的理想系统.小肠上皮由绒毛和隐窝两部分组成,而位于小肠隐窝底部的小肠干细胞是其持续更新的源泉.近年来,以Lgr5为代表的小肠干细胞标记物的发现、Lgr5+小肠干细胞的分离培养和多种转基因小鼠模型的出现,极大地促进了对小肠干细胞自我更新和分化调控的研究,使得人们可以更加深入地认识小肠干细胞命运决定的分子机制.本文简要综述了近年来人们对Wnt,BMP,Notch和EGF等信号如何在小肠干细胞命运调控中发挥作用的认识.  相似文献   

8.
9.
The R-spondin protein family   总被引:1,自引:0,他引:1  
The four vertebrate R-spondin proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway. These proteins are approximately 35 kDa, and are characterized by two amino-terminal furin-like repeats, which are necessary and sufficient for Wnt signal potentiation, and a thrombospondin domain situated more towards the carboxyl terminus that can bind matrix glycosaminoglycans and/or proteoglycans. Although R-spondins are unable to initiate Wnt signaling, they can potently enhance responses to low-dose Wnt proteins. In humans, rare disruptions of the gene encoding R-spondin1 cause a syndrome of XX sex reversal (phenotypic male), palmoplantar keratosis (a thickening of the palms and soles caused by excess keratin formation) and predisposition to squamous cell carcinoma of the skin. Mutations in the gene encoding R-spondin4 cause anonychia (absence or hypoplasia of nails on fingers and toes). Recently, leucine-rich repeat-containing G-protein-coupled receptor (Lgr)4, Lgr5 and Lgr6, three closely related orphans of the leucine-rich repeat family of G-protein-coupled receptors, have been identified as receptors for R-spondins. Lgr5 and Lgr6 are markers for adult stem cells. Because R-spondins are potent stimulators of adult stem cell proliferation in vivo and in vitro, these findings might guide the therapeutic use of R-spondins in regenerative medicine.  相似文献   

10.
11.
Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.  相似文献   

12.
Wnt/β-catenin signaling has a well-established role in the development of the central nervous system (CNS), and recent evidence is extending this role to include the regulation of adult hippocampal function, including neurogenesis within the dentate gyrus. While the neuroanatomical expression pattern of many canonical Wnt signaling components have been investigated, the sites of signal integration and functional downstream β-catenin activation remain comparatively less characterized in the adult CNS. Using two independent transgenic β-catenin-activated LacZ reporter mouse lines (BatGal and ins-TopGal), we demonstrate that Wnt/β-catenin signaling is active in discrete regions of the adult mouse CNS. Intriguingly, BatGal mice exhibit a broad pattern of reporter expression in the CNS, while expression in ins-TopGal mice is more restricted. Further investigation of these two lines reveals temporal differences in β-catenin-activated reporter expression during neurogenesis within the adult hippocampus. Ins-TopGal mice display peaks of Wnt/β-catenin-activated reporter expression during early and later stages of neurogenesis suggesting Wnt/β-catenin signaling plays an important role during both progenitor cell amplification as well as neuronal maturation, integration, and/or maintenance; however, results from BatGal mice are not as convincing. Thus our data using ins-TopGal mice are consistent with the idea that Wnt signaling plays diverse roles during adult hippocampal neurogenesis and support the idea that multiple transgenic reporter lines must be rigorously compared during scientific investigations.  相似文献   

13.
Notch signaling plays a pivotal role in the regulation of vertebrate neurogenesis. However, in vitro experiments suggest that Notch1 may also be involved in the regulation of later stages of brain development. We have addressed putative roles in the central nervous system by examining the expression of Notch signaling cascade components in the postnatal mouse brain. In situ mRNA hybridization revealed that Notch1 is associated with cells in the subventricular zone, the dentate gyrus and the rostromigratory stream, all regions of continued neurogenesis in the postnatal brain. In addition, Notch1 is expressed at low levels throughout the cortex and olfactory bulb and shows striking expression in the cerebellar Purkinje cell layer. The Notch ligands, including Delta-like1 and 3 and Jagged1 and Jagged2, show distinct expression patterns in the developing and adult brain overlapping that of Notch1. In addition, the downstream targets of the Notch signaling cascade Hes1, Hes3, Hes5 and the intrinsic Notch regulatory proteins Numb and Numblike also show active signaling in distinct brain regions. Hes5 coincides with the majority of Notch1 expression and can be detected in the cerebral cortex, cerebellum and putative germinal zones. Hes3, on the other hand, shows a restricted expression in cerebellar Purkinje cells. The distribution of Notch1 and its putative ligands suggest distinct roles in specific subsets of cells in the postnatal brain including putative stem cells and differentiated neurons.  相似文献   

14.
The Wnt signaling pathway regulates physiological processes such as cell proliferation and differentiation, cell fate decisions, and stem cell maintenance and, thus, plays essential roles in embryonic development, but also in adult tissue homeostasis and repair. The Wnt signaling pathway has been associated with heart development and repair and has been shown to be crucially involved in proliferation and differentiation of progenitor cells into cardiomyocytes. The investigation of the role of the Wnt signaling pathway and the regulation of its expression/activity in atrial fibrillation has only just begun. The present minireview (I) provides original data regarding the expression of Wnt signaling components in atrial tissue of patients with atrial fibrillation or sinus rhythm and (II) summarizes the current state of knowledge of the regulation of Wnt signaling components’ expression/activity and the contribution of the various levels of the Wnt signal transduction pathway to the processes of the development, maintenance, and progression of atrial fibrillation.  相似文献   

15.
Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice. Furthermore, Wnt7a is important for neuronal differentiation and maturation. Loss of Wnt7a expression led to a substantial decrease in the number of newborn neurons in the hippocampal dentate gyrus. Wnt7a−/− dentate granule neurons exhibited dramatically impaired dendritic development. Moreover, Wnt7a activated β-catenin and its downstream target genes to regulate neural stem cell proliferation and differentiation. Wnt7a stimulated neural stem cell proliferation by activating the β-catenin–cyclin D1 pathway and promoted neuronal differentiation and maturation by inducing the β-catenin–neurogenin 2 pathway. Thus, Wnt7a exercised critical control over multiple steps of neurogenesis by regulating genes involved in both cell cycle control and neuronal differentiation.  相似文献   

16.
We previously reported that CD44-positive cells were candidates for astrocyte precursor cells in the developing cerebellum, because cells expressing high levels of CD44 selected by fluorescence-activated cell sorting (FACS) gave rise only to astrocytes in vitro. However, whether CD44 is a specific cell marker for cerebellar astrocyte precursor cells in vivo is unknown. In this study, we used immunohistochemistry, in situ hybridization, and FACS to analyze the spatial and temporal expression of CD44 and characterize the CD44-positive cells in the mouse cerebellum during development. CD44 expression was observed not only in astrocyte precursor cells but also in neural stem cells and oligodendrocyte precursor cells (OPCs) at early postnatal stages. CD44 expression in OPCs was shut off during oligodendrocyte differentiation. Interestingly, during development, CD44 expression was limited specifically to Bergmann glia and fibrous astrocytes among three types of astrocytes in cerebellum, and expression in astrocytes was shut off during postnatal development. CD44 expression was also detected in developing Purkinje and granule neurons but was limited to granule neurons in the adult cerebellum. Thus, at early developmental stages of the cerebellum, CD44 was widely expressed in several types of precursor cells, and over the course of development, the expression of CD44 became restricted to granule neurons in the adult.  相似文献   

17.
Multipotential adult mesenchymal stem cells (MSCs) are able to differentiate along several known lineages, and lineage commitment is tightly regulated through specific cellular mediators and interactions. Recent observations of a low/high bone-mass phenotype in patients expressing a loss-/gain-of-function mutation in LRP5, a coreceptor of the Wnt family of signaling molecules, suggest the importance of Wnt signaling in bone formation, possibly involving MSCs. To analyze the role of Wnt signaling in mesenchymal osteogenesis, we have profiled the expression of WNTs and their receptors, FRIZZLEDs (FZDs), and several secreted Wnt inhibitors, such as SFRPs, and examined the effect of Wnt 3a, as a representative canonical Wnt member, during MSC osteogenesis in vitro. WNT11, FZD6, SFRP2, and SFRP3 are upregulated during MSC osteogenesis, while WNT9A and FZD7 are downregulated. MSCs also respond to exogenous Wnt 3a, based on increased beta-catenin nuclearization and activation of a Wnt-responsive promoter, and the magnitude of this response depends on the MSC differentiation state. Wnt 3a exposure inhibits MSC osteogenic differentiation, with decreased matrix mineralization and reduced alkaline phosphatase mRNA and activity. Wnt 3a treatment of fully osteogenically differentiated MSCs also suppresses osteoblastic marker gene expression. The Wnt 3a effect is accompanied by increased cell number, resulting from both increased proliferation and decreased apoptosis, particularly during expansion of undifferentiated MSCs. The osteo-suppressive effects of Wnt 3a are fully reversible, i.e., treatment prior to osteogenic induction does not compromise subsequent MSC osteogenesis. The results also showed that sFRP3 treatment attenuates some of the observed Wnt 3a effects on MSCs, and that inhibition of canonical Wnt signaling using a dominant negative TCF1 enhances MSC osteogenesis. Interestingly, expression of Wnt 5a, a non-canonical Wnt member, appeared to promote osteogenesis. Taken together, these findings suggest that canonical Wnt signaling functions in maintaining an undifferentiated, proliferating progenitor MSC population, whereas non-canonical Wnts facilitate osteogenic differentiation. Release from canonical Wnt regulation is a prerequisite for MSC differentiation. Thus, loss-/gain-of-function mutations of LRP5 would perturb Wnt signaling and depress/promote bone formation by affecting the progenitor cell pool. Elucidating Wnt regulation of MSC differentiation is important for their potential application in tissue regeneration.  相似文献   

18.
19.
Neurogenesis is a powerful mechanism for structural and functional remodeling that occurs in restricted areas of the adult brain. Although different neurotransmitters regulate various aspects of the progression from neural stem cell quiescence to neuronal maturation, GABA is the main player. The developmental switch from excitation to inhibition combined with a heterogeneous population of GABAergic interneurons that target different subcellular compartments provides multiple points for the regulation of development and function of new neurons. This complexity is enhanced by feedback and feedforward networks that act as sensors and controllers of circuit activity, impinging directly or indirectly onto developing granule cells and, subsequently, on mature neurons. Newly generated granule cells ultimately connect with input and output partners in a manner that is largely sculpted by the activity of local circuits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号