首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
为揭示辣椒NAC转录因子的功能,以高抗疫病辣椒CM334为试验材料,克隆获得CaNAC55基因全长gDNA和cDNA序列。生物信息学分析表明,CaNAC55基因gDNA全长4 164 bp, cDNA完整开放阅读框(ORF)为1 299 bp,基因编码的蛋白由432个氨基酸残基组成;基因序列比对和同源性分析结果表明,CaNAC55与辣椒(XM-016722474)、番茄(XM-004241285)和马铃薯(XM-006361027)的亲缘关系最近,氨基酸相似度分别达到99.87%、93.37%和92.62%。实时荧光定量分析表明,干旱、高盐、热激处理均可诱导CaNAC55基因表达,其中干旱、高盐、热激处理分别在24 h、24 h和12 h时表达量达到峰值,且分别为对照的3.01倍、20.92倍和8.84倍;ABA处理下,CaNAC55基因的相对表达量显著低于对照,说明CaNAC55基因的表达受到ABA的抑制。研究表明,辣椒CaNAC55转录因子对不同逆境胁迫的响应不同,推测辣椒CaNAC55基因可能作为重要的调节因子参与逆境胁迫响应。  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Myo-inositol participates in many different aspects of plant physiology and myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the rate limiting step of inositol biosynthetic pathway. Chickpea (Cicer arietinum), a drought-tolerant leguminous crop plant, is known to accumulate increased inositol during dehydration stress. Previously, we reported two differentially expressed divergent genes (CaMIPS1 and CaMIPS2) encoding two MIPS isoforms in chickpea. In this communication, we demonstrated that CaMIPS2 is an early dehydration-responsive gene and is also rapidly induced by exogenous ABA application, while CaMIPS1 expression is not much influenced by dehydration or ABA. The regulation of expression of these two genes has been studied by examining their promoter activity through GUS reporter gene and differential promoter activity has been observed. Moreover, unlike CaMIPS1 promoter, CaMIPS2 promoter contains CRT/DRE cis-regulatory element which seems to play a key role in dehydration-induced expression of CaMIPS2. Furthermore, CaMIPS1 and CaMIPS2 have been successfully complemented and shown to repair the defect of seedling growth and altered seed phenotype of Atmips1 mutant. Moreover, Arabidopsis transgenic plants overexpressing CaMIPS1 or CaMIPS2 exhibit improved tolerance to salinity and dehydration stresses and such tolerance of transgenic plants is correlated with their elevated level of inositol. Remarkably, CaMIPS2 transgenic lines perform better in all attributes than CaMIPS1 transformants under such stress conditions, due to comparatively unabated production of inositol by CaMIPS2 enzyme, as this enzyme retains significant activity under stress conditions.  相似文献   

12.
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.  相似文献   

13.
14.
15.
16.
17.
Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号