首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase B (MptpB) is an important virulence factor for Mtb that contributes to survival of the bacteria in macrophages. The absence of a human ortholog makes MptpB an attractive target for new therapeutics to treat tuberculosis. MptpB inhibitors could be an effective treatment to overcome emerging TB drug resistance. Adopting a structure-based virtual screening strategy, we successfully identified thiobarbiturate-based drug-like MptpB inhibitor 15 with an IC50 of 22.4 μM, and as a non-competitive inhibitor with a Ki of 24.7 μM. Importantly, not only did it exhibit moderate cell membrane permeability, compound 15 also displayed potent inhibition of intracellular TB growth in the macrophage, making it an excellent lead compound for anti-TB drug discovery. To the best of our knowledge, this novel thiobarbiturate is the first class of MptpB inhibitor reported so far that leveraged docking- and pharmacophore-based virtual screening approaches. The results of preliminary structure-activity relationship demonstrated that compound 15 identified herein was not a singleton and may inspire the design of novel selective and drug-like MptpB inhibitors.  相似文献   

2.
Mycobacterium tuberculosis pantothenate synthetase is a potential anti-tuberculosis target, and a high-throughput screening system was previously developed to identify its inhibitors. Using a similar system, we screened a small library of compounds and identified actinomycin D (ActD) as a weak inhibitor of pantothenate synthetase. A new method was established to discover more effective inhibitors by determining the molecular mechanism of ActD inhibition followed by structure-based virtual screening. The molecular interaction of inhibition was determined by circular dichroism and tryptophan fluorescence quenching. The structure-based search and virtual screening were performed using the Molecular Operating Environment (MOE) program and SYBYL 7.5, respectively. Two inhibitors were identified with an IC50 for pantothenate synthetase that was at least ten times better than that of ActD.  相似文献   

3.

Background

Multiplex ligation-dependent probe amplification (MLPA) is a powerful tool to identify genomic polymorphisms. We have previously developed a single nucleotide polymorphism (SNP) and large sequence polymorphisms (LSP)-based MLPA assay using a read out on a liquid bead array to screen for 47 genetic markers in the Mycobacterium tuberculosis genome. In our assay we obtain information regarding the Mycobacterium tuberculosis lineage and drug resistance simultaneously. Previously we called the presence or absence of a genotypic marker based on a threshold signal level. Here we present a more elaborate data analysis method to standardize and streamline the interpretation of data generated by MLPA. The new data analysis method also identifies intermediate signals in addition to classification of signals as positive and negative. Intermediate calls can be informative with respect to identifying the simultaneous presence of sensitive and resistant alleles or infection with multiple different Mycobacterium tuberculosis strains.

Results

To validate our analysis method 100 DNA isolates of Mycobacterium tuberculosis extracted from cultured patient material collected at the National TB Reference Laboratory of the National Center for Tuberculosis and Lung Diseases in Tbilisi, Republic of Georgia were tested by MLPA. The data generated were interpreted blindly and then compared to results obtained by reference methods. MLPA profiles containing intermediate calls are flagged for expert review whereas the majority of profiles, not containing intermediate calls, were called automatically. No intermediate signals were identified in 74/100 isolates and in the remaining 26 isolates at least one genetic marker produced an intermediate signal.

Conclusion

Based on excellent agreement with the reference methods we conclude that the new data analysis method performed well. The streamlined data processing and standardized data interpretation allows the comparison of the Mycobacterium tuberculosis MLPA results between different experiments. All together this will facilitate the implementation of the MLPA assay in different settings.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-572) contains supplementary material, which is available to authorized users.  相似文献   

4.
The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.  相似文献   

5.
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme–DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.  相似文献   

6.
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z′ factors were > 0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli.  相似文献   

7.
8.
Mycobacterium tuberculosis is a gram-positive bacterium causes tuberculosis in human. H37Rv strain is a pathogenic strain utilized for tuberculosis research. The cytidylate mono-phosphate (CMP) kinase of Mycobacterium tuberculosis belongs to the family nucleoside mono-phosphate kinase (NMK), this enzyme is required for the bacterial growth. Therefore, it is important to study the structural and functional features of this enzyme in the control of the disease. Hence, we developed the structural molecular model of the CMP kinase protein from Mycobacterium tuberculosis by homology modeling using the software MODELLER (9v10). Based on sequence similarity with protein of known structure (template) of Mycobacterium smegmatis (PDB ID: 3R20) was chosen from protein databank (PDB) by using BLASTp. The energy of constructed models was minimized and the qualities of the models were evaluated by PROCHECK and VERRIFY-3D. Resulted Ramachandran plot analysis showed that conformations for 100.00% of amino acids residues are within the most favored regions. A possible homologous deep cleft active site was identified in the Model using CASTp program. Amino acid composition and polarity of that protein was observed by CLC-Protein Workbench tool. Expasy''s Prot-param server and CYC_REC tool were used for physiochemical and functional characterization of the protein. Studied of secondary structure of that protein was carried out by computational program, ProFunc. The structure is finally submitted in Protein Model Database. The predicted model permits initial inferences about the unexplored 3D structure of the CMP kinase and may be promote in relational designing of molecules for structure-function studies.  相似文献   

9.
The number of effective drugs for the prevention and control of tuberculosis is very limited. Therefore, high-throughput screening for Mycobacterium tuberculosis drug targets is critical. In addition, determining the essential gene cluster is important for both understanding a survival mechanism and finding novel molecular targets for anti-tuberculosis drugs. In this study, we applied the pathway enrichment method to perform high throughput screening of genes encoding key molecules for potential drug targets for M. tuberculosis. Our results indicated 122 genes that existed in more than three pathways, while four existed in 11 pathways. We predicted 55 genes that are potentially essential genes. Four of them, namely, Rv0363c, Rv0408, Rv0409 and Rv0794c, had the highest probability to be essential genes, and thus further experimental validation is warranted.  相似文献   

10.
Multidrug efflux mechanism is the main cause of intrinsic drug resistance in bacteria. Mycobacterium multidrug resistant (MMR) protein belongs to small multidrug resistant family proteins (SMR), causing multidrug resistance to proton (H+)-linked lipophilic cationic drug efflux across the cell membrane. In the present work, MMR is treated as a novel target to identify new molecular entities as inhibitors for drug resistance in Mycobacterium tuberculosis. In silico techniques are applied to evaluate the 3D structure of MMR protein. The putative amino acid residues present in the active site of MMR protein are predicted. Protein–ligand interactions are studied by docking cationic ligands transported by MMR protein. Virtual screening is carried out with an in-house library of small molecules against the grid created at the predicted active site residues in the MMR protein. Absorption distribution metabolism and elimination (ADME) properties of the molecules with best docking scores are predicted. The studies with cationic ligands and those of virtual screening are analysed for identification of new lead molecules as inhibitors for drug resistance caused by the MMR protein.  相似文献   

11.
Enzymes from the de novo purine biosynthetic pathway have been exploited for the development of anti-cancer drugs, and represent novel targets for anti-bacterial drug development. In Mycobacterium tuberculosis, the cause of tuberculosis, this pathway has been identified as essential for growth and survival. The structure of M. tuberculosis PurN (MtPurN) has been determined in complex with magnesium and iodide at 1.30 Å resolution, and with cofactor analogue, 5-methyltetrahydrofolate (5MTHF) at 2.2 Å resolution. The structure shows a Rossmann-type fold that is very similar to the known structures of the human and E. coli PurN proteins. In contrast, MtPurN forms a dimer that is quite different from that formed by the Escherichia coli PurN, and which suggests a mechanism whereby communication could take place between the two active sites. Differences are seen in two active site loops and in the binding mode of the 5MTHF cofactor analogue between the two MtPurN molecules of the dimer. A binding site for halide ions is found in the dimer interface, and bound magnesium and iodide ions in the active site suggest sites that might be exploited in potential drug discovery strategies.  相似文献   

12.
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.  相似文献   

13.
The multicellular model organism Caenorhabditis elegans is a small nematode of approximately 1 mm in size in adulthood that is genetically and experimentally tractable. It is economical and easy to culture and dispense in liquid medium which makes it well suited for medium-throughput screening. We have previously validated the use of transgenic luciferase expressing C. elegans strains to provide rapid in vivo assessment of the nematode’s ATP levels.1-3 Here we present the required materials and procedure to carry out bioassays with the bioluminescent C. elegans strains PE254 or PE255 (or any of their derivative strains). The protocol allows for in vivo detection of sublethal effects of drugs that may identify mitochondrial toxicity, as well as for in vivo detection of potential beneficial drug effects. Representative results are provided for the chemicals paraquat, rotenone, oxaloacetate and for four firefly luciferase inhibitory compounds. The methodology can be scaled up to provide a platform for screening drug libraries for compounds capable of modulating mitochondrial function. Pre-clinical evaluation of drug toxicity is often carried out on immortalized cancerous human cell lines which derive ATP mostly from glycolysis and are often tolerant of mitochondrial toxicants.4,5 In contrast, C. elegans depends on oxidative phosphorylation to sustain development into adulthood, drawing a parallel with humans and providing a unique opportunity for compound evaluation in the physiological context of a whole live multicellular organism.  相似文献   

14.

Tuberculosis (TB) is the major cause of human mortality from a curable infectious disease, attacking mainly in developing countries. Among targets identified in Mycobacterium tuberculosis genome, enzymes of the shikimate pathway deserve special attention, since they are essential to the survival of the microorganism and absent in mammals. The object of our study is shikimate kinase (SK), the fifth enzyme of this pathway. We applied virtual screening methods in order to identify new potential inhibitors for this enzyme. In this work we employed MOLDOCK program in all molecular docking simulations. Accuracy of enzyme-ligand docking was validated on a set of 12 SK-ligand complexes for which crystallographic structures were available, generating root-mean square deviations below 2.0 Å. Application of this protocol against a commercially available database allowed identification of new molecules with potential to become drugs against TB. Besides, we have identified the binding cavity residues that are essential to intermolecular interactions of this enzyme.

  相似文献   

15.
GlgB (α-1,4-glucan branching enzyme) is the key enzyme involved in the biosynthesis of α-glucan, which plays a significant role in the virulence and pathogenesis of Mycobacterium tuberculosis. Because α-glucans are implicated in the survival of both replicating and non-replicating bacteria, there exists an exigent need for the identification and development of novel inhibitors for targeting enzymes, such as GlgB, involved in this pathway. We have used the existing structural information of M. tuberculosis GlgB for high throughput virtual screening and molecular docking. A diverse database of 330,000 molecules was used for identifying novel and efficacious therapeutic agents for targeting GlgB. We also used three-dimensional shape as well as two-dimensional similarity matrix methods to identify diverse molecular scaffolds that inhibit M. tuberculosis GlgB activity. Virtual hits were generated after structure and ligand-based screening followed by filters based on interaction with human GlgB and in silico pharmacokinetic parameters. These hits were experimentally evaluated and resulted in the discovery of a number of structurally diverse chemical scaffolds that target M. tuberculosis GlgB. Although a number of inhibitors demonstrated in vitro enzyme inhibition, two compounds in particular showed excellent inhibition of in vivo M. tuberculosis survival and its ability to get phagocytosed. This work shows that in silico docking and three-dimensional chemical similarity could be an important therapeutic approach for developing inhibitors to specifically target the M. tuberculosis GlgB enzyme.  相似文献   

16.
The enzyme 6-phosphogluconate dehydrogenase is a potential drug target for the parasitic protozoan Trypanosoma brucei, the causative organism of human African trypanosomiasis. This enzyme has a polar active site to accommodate the phosphate, hydroxyl and carboxylate groups of the substrate, 6-phosphogluconate. A virtual fragment screen was undertaken of the enzyme to discover starting points for the development of inhibitors which are likely to have appropriate physicochemical properties for an orally bioavailable compound. A virtual screening library was developed, consisting of compounds with functional groups that could mimic the phosphate group of the substrate, but which have a higher pKa. Following docking, hits were clustered and appropriate compounds purchased and assayed against the enzyme. Three fragments were identified that had IC50 values in the low micromolar range and good ligand efficiencies. Based on these initial hits, analogues were procured and further active compounds were identified. Some of the fragments identified represent potential starting points for a medicinal chemistry programme to develop potent drug-like inhibitors of the enzyme.  相似文献   

17.
Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.  相似文献   

18.
19.
Mycobacterium tuberculosis dTDP-d-glucose 4,6-dehydratase (RmlB) is the second enzyme for the biosynthesis of dTDP-l-rhamnose, which is a sugar donor to the synthesis of the cell wall linker, d-N-acetylglucosamine-l-rhamnose. RmlB is essential to mycobacterial growth and is not found in humans; therefore, it is a potential target for developing new anti-tuberculosis drugs. So far, there has been no suitable method for high-throughput screening of RmlB inhibitors. Here, the recombinant M. tuberculosis RmlB was purified and an absorbance-based microtiter plate assay was developed for RmlB activity. It could be used for high-throughput screening of RmlB inhibitors. The kinetic properties of M. tuberculosis RmlB, including optimal pH, optimal temperature, the effect of metal ions, and the kinetic parameters, were determined with this assay. The inhibitory effects of dTTP and dTDP on M. tuberculosis RmlB were also studied with the assay.  相似文献   

20.
Mycobacterium tuberculosis (MTB) is becoming more and more resistant to drugs and it is a common problem, making current antimicrobials ineffective and highlighting the need for new TB drugs. One of the promising targets for treating MTB is MurB enzymes. This study aimed to identify potential inhibitors of MurB enzymes in M. tuberculosis, as drug resistance among MTB is a significant problem. Attempts are being made to conduct a virtual screening of 30,417 compounds, and thirty-two compounds were chosen for further analysis based on their binding conformations. The selected compounds were assessed for their drug-likeness, pharmacokinetics, and physiochemical characteristics, and seven compounds with binding energy lower than flavin (FAD) were identified. Further, molecular dynamics simulation analysis of these seven compounds found that four of them, namely DB12983, DB15688, ZINC084726167, and ZINC254071113 formed stable complexes with the MurB binding site, exhibiting promising inhibitory activity. These compounds have not been mentioned in any other study, indicating their novelty. The study suggests that these four compounds could be promising candidates for treating MTB, but their effectiveness needs to be validated through in vitro and in vivo experiments. Overall, the findings of this study provide new insight into potential drug targets and candidates for combating drug-resistant MTB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号