首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
S. Eber  R. Brandl 《植被学杂志》2003,14(2):259-266
Abstract. Plant population biology considers the dynamics of plant modules within stands. However, stands themselves may have considerable regional turnover in space and time. These changes in the number, distribution and size of plant stands generate a dynamic spatial pattern with important implications for the spatial and temporal dynamics of phytophagous insects using these plants as a host. During five successive years we studied the regional distribution and patch dynamics of the creeping thistle Cirsium arvense and the distribution of associated populations of the herbivore Urophora cardui (Diptera: Tephritidae), a specialist stem gall former. The study conducted was in a 15 km2 heterogeneous, agricultural area in northeastern Bavaria. The distribution of the number of plants per patch was skewed with many more small C. arvense patches than large ones. During the five years of study, there was a 50% increase in the number of C. arvense patches, and a decrease in the mean number of plants per patch (= patch size) to less than half the patch size of the first year. Whilst patch size was randomly distributed in space, patch density showed a consistent, non‐random spatial pattern. Patch density was spatially auto‐correlated, with areas of high or low patch density having a characteristic dimension of ca. 1 km. Patch size was predictable in time and appeared to be regulated by size dependent processes, with the extinction probability of a patch being negatively correlated with its size. Correlated with the decline of C. arvense patch size during the study, the occupancy and total numbers of the herbivore U. cardui had a marked decrease, suggesting that the regional distribution of the stem gall former is not only influenced by patch number but more importantly by the mean patch size. With decreasing patch sizes, U. cardui was faced with an increasingly dynamic landscape due to higher extinction rates of small patches, although the mean distance between host plant patches decreased.  相似文献   

2.
Understanding population dynamics and population regulation of invasive species is critical for predicting their effects on native ecosystems as well as for control strategies. Many species of gastropod in the genus Pomacea are successful aquatic invaders that have caused economic and ecological impacts in Southeastern Asia where their large fecundity and broad reproductive window helps them to colonize and take advantages of ephemeral agricultural habitats. We followed the population dynamics of P. insularum in permanent, stable freshwater systems (ponds and streams), and in ephemeral agricultural habitats in the upper Texas Gulf Coast region, USA. We found that although P. insularum has a large reproductive potential, its density, biomass and size structure in stable permanent systems did not change significantly from March to November, and densities averaged <2 m−2. This same species, however, displayed very different population dynamics in ephemeral agricultural environments. We found high densities (>130 m−2), and no stable size structure through time. Differences in the stability and persistence of these two types of environments appear to drive these patterns. Stability and persistence of habitats can result in different predator communities and the risk of predation for snails. We suggest that such factors may cause the differences in population dynamics and structure observed. The ability of snails to escape population control and explode in ephemeral habitats could drive the types of impacts seen on agricultural crops.  相似文献   

3.
Bark beetle population dynamics is thought to be primarily driven by bottom‐up forces affecting insect performance and host tree resistance. Although there are theoretical predictions and empirical evidences that predation and parasitism may play an important role in driving bark beetle population fluctuations, long‐term studies testing the role of both biotic and abiotic controls on population dynamics are still rare. The aim of the study was to quantify the relative importance of predation, negative density feedback and abiotic factors in driving Ips typographus population dynamics. We analyzed a unique time series of population density of I. typographus and its main predator Thanasimus formicarius over almost two decades in four regions across Sweden. We used a discrete population model and a multi‐model inference approach to evaluate the importance of both bottom up and top down factors. We found that availability of breeding substrates in the form of storm‐felled trees was the main outbreak trigger, while strong intra‐specific competition for host trees was the main endogenous regulating factor. Although temperature‐related metrics are known to have strong individual effect on I. typographus development and number of generations, they did not emerge as important drivers of population dynamics. A positive effect of low summer rainfall was evident only in the region located in the southernmost and warmest part of the spruce distribution range in Sweden. Predator density did not emerge as an important prey regulating factor. As the reported damage from storms seems to have increased across whole Europe, spruce forests are expected to be increasingly susceptible to large outbreaks of I. typographus with important economic and ecological consequences for boreal ecosystems. However, the observed negative density feedback seems to be a natural regulating mechanism that impedes a strong long‐term propagation of the outbreaks.  相似文献   

4.
Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation.  相似文献   

5.
The logistic model is a fundamental population model often used as the basis for analyzing wildlife population dynamics. In the classic logistic model, however, population dynamics may be difficult to characterize if habitat size is temporally variable because population density can vary at a constant abundance, which results in variable strength of density‐dependent feedback for a given population size. To incorporate habitat size variability, we developed a general population model in which changes in population abundance, density, and habitat size are taken into account. From this model, we deduced several predictions for patterns and processes of population dynamics: 1) patterns of fluctuation in population abundance and density can diverge, with respect of their correlation and relative variability; and 2) along with density dependence, habitat size fluctuation can affect population growth with a time lag because changes in habitat size result in changes in population density. In order to test these predictions, we applied our model to population dynamics data of 36 populations of Tigriopus japonicus, a marine copepod inhabiting tide pools of variable sizes caused by weather processes. As expected, we found a significant difference in the fluctuation patterns of population abundance and density of T. japonicus populations with respect to the correlation between abundance and density and their relative variability, which correlates positively with the variability of habitat size. In addition, we found direct and lagged‐indirect effects of weather processes on population growth, which were associated with density dependence and impose regulatory forces on local and regional population dynamics. These results illustrate how changes in habitat size can have an impact on patterns and processes of wildlife population dynamics. We suggest that without knowledge of habitat size fluctuation, measures of population size and its variability as well as inferences about the processes of population dynamics may be misleading.  相似文献   

6.
Population dynamics are typically affected by a combination of density-independent and density-dependent factors, the latter of which have been conceptually and theoretically linked with how variable population sizes are over time—which in turn has been tied to how prone populations are to extinction. To address evidence for the occurrence of density dependence and its relationship with population size variability (pv), we quantified each of these for 126 populations of 8 species of Salmoniformes. Using random-effects models, we partitioned variation in the strength of density dependence and the magnitude of pv between and within species and estimated the correlation of density dependence and population size variability at both the between- and within-species levels. We found that variation in the strength of density dependence was predominately within species (I 2 = 0.47). In contrast, variation in population size variability was distributed both between and within species (I 2 = 0.40). Contrary to theoretical and conceptual expectations, the strength of density dependence and the magnitude of population size variability were positively correlated at the between species level (r = 0.90), although this estimate had 95 % credibility intervals (Bayesian analogues to confidence intervals) that overlapped zero. The within-species correlation between density dependence and population size variability was not distinguishable from zero. Given that density dependence for Salmoniformes was highly variable within species, we next determined the joint effects of intrinsic (density-dependent) and extrinsic (density-independent) factors on the population dynamics of a threatened salmonid, the Lahontan cutthroat trout (Oncorhynchus clarkii henshawi). We found that density-dependent and -independent factors additively contributed to population dynamics. This finding suggests that the observed within-species variability in density dependence might be attributable to local differences in the strength of density-independent factors.  相似文献   

7.
ANA DELGADO  FRANCISCO MOREIRA 《Ibis》2010,152(3):633-642
The Little Bustard is suffering a widespread population decline mainly due to agricultural intensification. This study evaluates the effects of intensification level, habitat availability and rainfall on the population dynamics of this species. The population density of males was monitored for 7 years (2002–2008) at 184 points located within three sites with contrasting levels of agricultural intensification in southern Portugal. Densities decreased along the intensification gradient from 8.2 to 2.3 males / km2. Overall, there was an approximately 50% population decline during the period 2002–2008, driven by a decline observed in one of the less intensive sites, whereas in the other two sites densities remained fairly constant. Yearly variations in male densities were influenced by intensification level, amount of grassland habitat and rainfall patterns. Thus, agricultural intensification is having a negative effect on population densities of this threatened species, particularly through the loss of grasslands (fallow fields and pastures) suitable for displaying males. The results also suggest a positive impact of rainfall on male densities, although this is more likely in grasslands within less intensive agricultural regions of poorer soil quality, where higher breeding male densities occur. Grassland habitat quality, driven by both climate and human management, probably plays a major role in the population dynamics of this threatened steppe bird in its strongholds.  相似文献   

8.
Generic diversity dynamics of the Phanerozoic marine animals is far better described by the hyperbolic model, widely used in demography and macrosociology, than by the exponential and logistic models from population dynamics traditionally employed for this purpose. Exponential and logistic models imply zero influence of interactions between taxa on the dynamics of diversity, with the exception of competing for unoccupied ecological space, whereas the hyperbolic model implies non-linear second-order positive feedback in the development of the biota. The hyperbolic human population growth is caused by positive feedback between population size and the rate of technological and cultural development (the more individuals, the more inventors, the more rapid progress, the more rapid growth of the Earth's bearing capacity; the smaller death-rate, the more accelerated growth-rate of the population). Probably there is also non-linear second-order positive feedback between diversity and community structure (the more genera, the higher alpha-diversity, which is defined as average number of genera per community, the more complicated and stable, "buffered" communities, the greater "taxonomic capacity of the environment" and average duration of the existence of genera; extinction rate dencreases, biodiversity growth-rate increases). The simplest mathematical model of biodiversity dynamics based on this assumption is confirmed by empirical data on alpha-diversity dynamics. Progressive complexification of marine communities during the Phanerozoic is also confirmed by the growing evennes of generic abundance distribution in paleocommunities.  相似文献   

9.
The population dynamics of the enchytraeid Cognettia sphagnetorum originating from an unmanaged forest (FP), a clear-cut area (CCP) or a plot treated with birch ash (APP) and the effects of population origin on labile C and N dynamics were investigated. Twenty individuals of C. sphagnetorum were introduced in microcosms containing humus from the unmanaged forest devoid of enchytraeids and amended with sucrose, and incubated for 14 weeks. Triplicate microcosms from FP, CCP and APP treatments were destructively sampled every second week and enchytraeid population density, individual length, nematode abundance and trophic structure, humus properties and dissolved organic C (DOC) and N (DON), and NH4–N in soil were determined. The enchytraeid body size was initially smaller in CCP and APP than in FP. The enchytraeid propagation rate was lower and individual size less variable in APP than in FP or CCP, and although enchytraeid size increased in all treatments, exponential population models indicated that APP was less stable. Nematode community was dominated by bacterial-feeders especially in the microcosms with APP. N mineralization rate was lower and DOC decomposition rate greater in APP systems. The results show that C. sphagnetorum is more sensitive to wood ash than clear-cutting, and its altered body size distribution has the potential to affect the dynamics of soluble nutrients.  相似文献   

10.
1.?Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2.?This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3.?We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4.?The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5.?We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics.  相似文献   

11.
Climate warming leads to widespread permafrost thaw with a fraction of the thawed permafrost carbon (C) being released as carbon dioxide (CO2), thus triggering a positive permafrost C-climate feedback. However, large uncertainty exists in the size of this model-projected feedback, partly owing to the limited understanding of permafrost CO2 release through the priming effect (i.e., the stimulation of soil organic matter decomposition by external C inputs) upon thaw. By combining permafrost sampling from 24 sites on the Tibetan Plateau and laboratory incubation, we detected an overall positive priming effect (an increase in soil C decomposition by up to 31%) upon permafrost thaw, which increased with permafrost C density (C storage per area). We then assessed the magnitude of thawed permafrost C under future climate scenarios by coupling increases in active layer thickness over half a century with spatial and vertical distributions of soil C density. The thawed C stocks in the top 3 m of soils from the present (2000–2015) to the future period (2061–2080) were estimated at 1.0 (95% confidence interval (CI): 0.8–1.2) and 1.3 (95% CI: 1.0–1.7) Pg (1 Pg = 1015 g) C under moderate and high Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5, respectively. We further predicted permafrost priming effect potential (priming intensity under optimal conditions) based on the thawed C and the empirical relationship between the priming effect and permafrost C density. By the period 2061–2080, the regional priming potentials could be 8.8 (95% CI: 7.4–10.2) and 10.0 (95% CI: 8.3–11.6) Tg (1 Tg = 1012 g) C year−1 under the RCP 4.5 and RCP 8.5 scenarios, respectively. This large CO2 emission potential induced by the priming effect highlights the complex permafrost C dynamics upon thaw, potentially reinforcing permafrost C-climate feedback.  相似文献   

12.
Chris T. Bauch 《Oikos》2008,117(12):1824-1832
In modern industrialized countries, human birth rates have been declining persistently for decades. In many cases they have now fallen below the replacement threshold. However, unlike in natural populations where population growth is constrained by limited resources, birth rates in modern industrialized countries are negatively correlated with resource availability. Here, declining birth rates in human populations are shown to be a manifestation of density‐dependent population growth brought on by socioeconomic development. This is demonstrated by combining empirical power law relations between population size, gross domestic product (GDP) per capita, and fertility in a simple theoretical model describing population dynamics in developed countries. For a closed population, the model exhibits growth to a globally stable equilibrium population size, for both national and city populations. A version of the model that is open with respect to immigration and the influence of foreign technology and capital exhibits a good fit to long‐term time series data on population size, GDP per capita, and birth rates for the United States, France and Japan.  相似文献   

13.
We examined the Zanzibar red colobus' (Procolobus kirkii) social structure and population dynamics in relation to the density, diversity and dispersion of food resources in ground-water forest and agricultural land, which we characterized in terms of red colobus food species density, diversity, basal area and dispersion. We used transect sampling and group follows to describe population dynamics and social systems. Two agricultural areas, SJF Shamba and Pete Village, had higher densities and more uniformly dispersed red colobus food tree species than those of the ground-water forest. Red colobus at these two sites had greater population densities and natality, and smaller home ranges than red colobus in the ground-water forest. However, these findings apply to a very small area of agricultural land (approximately 18 ha) that is contiguous with an area of the forest reserve having a high density of red colobus. It is not representative of agricultural areas elsewhere on Zanzibar which support much lower densities or no red colobus. Although agricultural areas contiguous with the forest reserve had high densities of red colobus, they appear to be very unstable. Within the agricultural areas, we observed higher intergroup variation in group size and composition, study groups that decreased dramatically in size and disappeared from the study site, significantly lower levels of juvenile recruitment, and red colobus food trees that exhibited definite signs of overbrowsing. This apparent instability in the subpopulation of red colobus utilizing agricultural systems probably reflects the lower basal area of food trees and the greater fragmentation of suitable habitat and floristic dynamics due to human activities in these areas. A fusion-fission social system occurred only in the ground-water forest subpopulation, which we hypothesize to be due to highly clumped food resources.  相似文献   

14.
Most modern population dynamics analyses of time series use simple population indices for ecological inference. These indices, collected for many years for various agricultural pests or game animals, are generally believed not to distort systematically feedback estimates because the assumption of linearity to population size roughly holds. To assess the relative importance of this assumption, we examined the effect of nonlinearity in a burrow index for voles on feedback estimates obtained through autoregressive modeling. We show that the issue of linearity is of less importance to ecological inference because the feedback estimates are routinely obtained on a logarithmic scale. Transforming data to logs has a strong linearization effect, removing most of the nonlinearity observed on the original scale. We conclude that the statistical tools for ecological inference, such as autoregressive log-linear models, are sufficiently robust to the systematic error imposed by index nonlinearity and that indices are valuable sources of ecological information even in situations when the assumed linear functional forms to population size were not exactly validated. We suggest that for time series modelers, the issue of a large sampling variation in small “noisy” populations is by far a more burning one than the systematic error due to index nonlinearity.  相似文献   

15.
Density dependence and the control of helminth parasites   总被引:1,自引:0,他引:1  
1. The transient dynamics and stability of a population are determined by the interplay between species density, its spatial distribution and the positive and negative density-dependent processes regulating population growth. 2. Using the human-helminth parasite system as an example, we propose that the life-stage upon which negative density dependence operates will influence the rate of host reinfection following anthelmintic chemotherapy, and the likely success of control programmes. 3. Simple deterministic models are developed which highlight how a parasite species whose population size is down-regulated by density-dependent establishment will reinfect a host population at a faster rate than a species with density-dependent parasite fecundity. 4. Different forms of density dependence can produce the same equilibrium behaviour but different transient dynamics. Under-representing the nature and magnitude of density-dependent mechanisms, and in particular those operating upon establishing life-stages, may cause the resilience of the parasite population to a control perturbation to be underestimated.  相似文献   

16.
松嫩平原农田土壤有机碳变化及固碳潜力估算   总被引:6,自引:0,他引:6  
姜蓝齐  臧淑英  张丽娟  孙丽  阎炳和 《生态学报》2017,37(21):7068-7081
基于1979—1985年全国第二次土壤普查和2015年实地采样数据,利用土壤类型法计算了近35年来松嫩平原及其各县农田表层土壤有机碳密度和土壤碳库储量;并分析了松嫩平原农田土壤有机碳密度的空间分布及变化特征;利用饱和值法对松嫩平原及其各县市农田土壤有机碳量的变化趋势进行拟合,估算其农田土壤的固碳潜力。结果表明:(1)2015年松嫩平原农田表层土壤有机碳密度平均值为1.61 kg/m~2,近35年来约有81.59%的农田土壤有机碳密度呈下降趋势,集中分布在松嫩平原北部、东部和东南部地区,以富裕县东部、依安县中部、肇东县西部、扶余县西部等地区土壤有机碳密度下降幅度最大;(2)2015年松嫩平原农田表层土壤有机碳库总储量为233.63 Tg,比全国第二次土壤普查减少了32.62 Tg;(3)2015年松嫩平原农田表层土壤总固碳潜力为-32.7 TgC,呈现出"碳源"趋势,农田土壤单位面积固碳潜力平均值为-1.793×10~(-3)Tg/km~2。  相似文献   

17.
Most of the population growth models comprise the concept of carrying capacity presume that a stable population would have a saturation level characteristic. This indicates that the population growth models have a common implicit feature of resource-limited growth, which contributes at a later stage of population growth by forming a numerical upper bound on the population size. However, a general underlying resource dynamics of the models has not been previously explored, which is the focus of present study. In this paper, we found that there exists a conservation of energy relationship comprising the terms of available resource and population density, jointly interpreted here as total available vital energy in a confined environment. We showed that this relationship determines a density-dependent functional form of relative population growth rate and consequently the parametric equations are in the form depending upon the population density, resource concentration, and time. Thus, the derived form of relative population growth rate is essentially a feedback type, i.e., updating parametric values for the corresponding population density. This resource dynamics-based feedback approach has been implemented for formulating variable carrying capacity in a confined environment. Particularly, at a constant resource replenishment rate, a density-dependent population growth equation similar to the classic logistic equation is derived, while one of the regulating factors of the underlying resource dynamics is that the resource consumption rate is directly proportional to the resource concentration. Likewise two other population growth equations similar to two known popular growth equations are derived based on this resource dynamics-based feedback approach. Using microcosm-derived data of fungus T. virens, we fitted one derived population growth model against the datasets, and concluded that this approach is practically implementable for studying a single population growth regulation in a confined environment.  相似文献   

18.
Top predators that forage in a purely exploitative manner on smaller stages of a size-structured prey population have been shown to exhibit an Allee effect. This Allee effect emerges from the changes that predators induce in the prey-population size distribution and represents a feedback of predator density on its own performance, in which the feedback operates through and is modified by the life history of the prey. We demonstrate that these emergent Allee effects will occur only if the prey, in the absence of predators, is regulated by density dependence in development through one of its juvenile stages, as opposed to regulation through adult fecundity. In particular, for an emergent Allee effect to occur, over-compensation is required in the maturation rate out of the regulating juvenile stage, such that a decrease in juvenile density will increase the total maturation rate to larger/older stages. If this condition is satisfied, predators with negative size selection, which forage on small prey, exhibit an emergent Allee effect, as do predators with positive size selection, which forage on large adult prey. By contrast, predators that forage on juveniles in the regulating stage never exhibit emergent Allee effects. We conclude that the basic life-history characteristics of many species make them prone to exhibiting emergent Allee effects, resulting in an increased likelihood that communities possess alternative stable states or exhibit catastrophic shifts in structure and dynamics.  相似文献   

19.
The density and distribution of badgerMeles meles (Linnaeus, 1758) setts was estimated by questionnaires and field studies, carried out in the Sudety Mountains between 1995–2002. The questionnaire referred to the whole territory of Polish Sudety Mts, while field studies were conducted in four different habitat types: low mountains with a mosaic farm-forest landscape, highly industrialised hilly areas, high mountain ranges of natural character and high mountain ranges of severe microclimate and heavily destroyed tree stands. On the basis of both questionnaires and field surveys, a total of 378 badger setts, classified according to their size and status, were identified. Among these, 119 (31.5%) were situated on three areas, while in the fourth area we did not find any badger setts. According to their size and traces of intensive occupation, 54 setts were regarded as main badger setts. The mean density of main setts on three areas was much the same and amounted to 0.05–0.07/km2 of their total surface, despite differences in their natural environment and agricultural or industrial changes in landscapes. In the Sudety Mts badgers selected settlements in forest habitats, bordering rich in food open areas. The density of main setts in forest areas ranged from 0.12 to 0.33/km2 depending on the proportion of forest, type and age of tree stands and size of forest complexes. The mean distance of main setts from open areas ranged from 209 to 280 m. The mean nearest neighbour distance (NND) between main setts ranged from 2.85 to 3.75 km. The home range size estimated for a social group varied from 7.9 to 13.6 km2. The highest occupied setts of our study were found on the ?nie?nik Massif, at an altitude of 700 m a.s.l.  相似文献   

20.
One of the main challenges in ecology is to determine the cause of population fluctuations. Both theoretical and empirical studies suggest that delayed density dependence instigates cyclic behavior in many populations; however, underlying mechanisms through which this occurs are often difficult to determine and may vary within species. In this paper, we consider single species population dynamics affected by the Allee effect coupled with discrete time delay. We use two different mathematical formulations of the Allee effect and analyze (both analytically and numerically) the role of time delay in different feedback mechanisms such as competition and cooperation. The bifurcation value of the delay (that results in the Hopf bifurcation) as a function of the strength of the Allee effect is obtained analytically. Interestingly, depending on the chosen delayed mechanism, even a large time delay may not necessarily lead to instability. We also show that, in case the time delay affects positive feedback (such as cooperation), the population dynamics can lead to self-organized formation of intermediate quasi-stationary states. Finally, we discuss ecological implications of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号