首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the in vitro effects of gentamicin and vancomycin alone and in combination added to polymethylmethacrylate (PMMA) cement specimens on the bacterial adhesion of multiresistant clinical isolates.The PMMA specimens (discs) loaded with gentamicin (1.9%) or vancomycin (1.9%) or with a combination of the two were placed in Mueller-Hinton Broth inoculated with bacterial strains. After incubation, bacterial growth was determined by optical density (OD540) and sub-cultures. The biofilm PMMA-associated dye (crystal violet) was measured. Antibiotic concentrations in broth were determined by fluorescence polarisation immunoassay.All antibiotic-loaded PMMA cement specimens released high, inhibitory concentrations of gentamicin and vancomycin. However, differences in strain growth and adhesion were recorded. The clinical isolates Met-R/Gent-R CoNS showed no adhesion to gentamicin-loaded specimens for 24 h; strains with Gent-Intermediate susceptibility exhibited growth after 48 h but reduced adhesion. Some Gent-R strains exhibited growth and adhesion to antibiotic-loaded specimens similar to controls (plain discs). Only the VRSA strain (Staphylococcus aureus 5/7) and Escherichia coli were able to grow and adhere to vancomycin-loaded specimens after 24 h of incubation. The specimens loaded with the gentamicin + vancomycin combination showed a synergistic inhibitory effect against all tested strains (no bacterial growth). The degree of bacterial adhesion to PMMA cement loaded with gentamicin or vancomycin may be reduced in spite of a normal growth rate and is different for the tested strains.The effect of gentamicin and vancomycin on bacterial growth and adhesion to PMMA bone cement depends on the antibiotic concentrations, on the characteristics of each specific strain and on its ability to produce biofilm and adhere to antibiotic-loaded PMMA bone cement.  相似文献   

2.
Sepsis is a greatly feared complication of total joint arthroplasty. One key question is how to prevent perioperative bacterial adherence, and therefore the potential for infectious complications. The objective of our study was to appraise the emerging capacity of staphylococcal survival on prosthetic materials and to analyze the in vitro effects of gentamicin and vancomycin loaded polymethylmethacrylate (PMMA) cement on bacterial adherence and growth. Hospital acquired staphylococcal strains were systematically inoculated on four orthopedic materials (ultrahigh molecular weight polyethylene, PMMA without antibiotic, commercially produced PMMA loaded with gentamicin, and manually mixed PMMA loaded with gentamicin and vancomycin). Staphylococci were identified using culture and biochemical tests. The inoculated material was allowed to incubate in a liquid broth growth media and subsequently prepared for scanning electron microscopy and bacterial growth quantification. Materials without antibiotics showed evidence of staphylococcal growth. PMMA loaded with only gentamicin grew methicillin-resistant Staphylococcus aureus. Gentamicin-vancomycin loaded PMMA completely inhibited any bacterial growth. Low-dose gentamicin-vancomycin loaded PMMA prevents staphylococcal colonization better than commercially manufactured PMMA loaded with gentamicin. We recommend this combination in high-risk procedures and revision surgeries requiring bone cement.  相似文献   

3.
Chitosan/β-glycerophosphate/collagen (C/GP/Co) is a promising injectable scaffold in the bone tissue engineering. In this study, we prepared this scaffold and evaluated its biocompatibility and effects on the osteogenic differentiation of mesenchymal stem cells (MSCs). After fabrication, the C/GP/Co hydrogel was examined in a scanning electron microscope (SEM) and showed a porous microstructure. Its biocompatibility was assessed by cell morphology and cell viability assays. Cell morphological observations were performed by fluorescent microscope in 2D cultivation and by laser confocal scanning microscope (LCSM) in 3D cultivation, respectively. Cell viability in 2D and that in 3D cultivation were both evaluated by the Cell Counting Kit-8 (CCK-8) assay. Its effect on osteogenic differentiation of MSCs in vitro was clarified by alkaline phosphatase (ALP) activity, Alizarin Red staining, and real-time polymerase chain reaction (Real-time PCR). An additional experiment of the ectopic bone formation in nude mice was conducted to investigate its effects on osteogenic differentiation of MSCs after subcutaneous injection. The results proved that C/GP/Co hydrogel exhibited good biocompatibility and enhanced the in vitro osteogenic differentiation of MSCs. In the experiment of ectopic bone formation, this hydrogel demonstrated its capability of supporting neovascularization and differentiation of MSCs toward osteogenic lineage. Therefore, C/GP/Co hydrogel scaffold holds a great promise for the bone tissue engineering applications.  相似文献   

4.
AIMS: The aim of this study is to investigate whether pulsed ultrasound (US) in combination with gentamicin yields a decreased viability of bacteria in biofilms on bone cements in vivo. METHODS AND RESULTS: Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with an Escherichia coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement discs loaded with gentamicin, freshly prepared and aged were used, and in one group unloaded bone cement discs in combination with systemically administered gentamicin. Pulsed ultrasound with a frequency of 28.48 kHz and a maximum acoustic intensity of 500 mW cm(-2) was applied continuously from 24 h till 72 h postsurgery on one of the two implanted discs. After euthanization and removal of the bacteria from the discs, the number of viable bacteria were quantified and skin samples were analysed for histopathological examination. Application of ultrasound, combined with gentamicin, reduced the viability of the biofilms in all three groups varying between 58 and 69% compared with the negative control. Histopathological examinations showed no skin lesions. CONCLUSIONS: Ultrasound resulted in a tendency of improved efficacy of gentamicin, either applied locally or systemically. Usage of ultrasound in this model proved to be safe. SIGNIFICANCE AND IMPACT OF THE STUDY: This study implies that ultrasound could improve the prevention of infection immediately after surgery, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice.  相似文献   

5.
Titanium has been utilized in the field of orthopaedic and dental reconstructive surgery, but mineralization through osteogenic differentiation of osteogenic cells on titanium surfaces has not been fully investigated. Here we cultured rat mesenchymal stem cells (MSCs) on the surfaces of titanium dishes in osteogenic media containing calcein which is a calcium-binding fluorescence dye. On titanium dishes, MSCs showed high viability to adhere to the surfaces and excellent proliferation. At day 14 of culture, MSCs differentiated into osteoblasts to form mineralized matrices on titanium dishes as well as tissue culture polystyrene (TCPS) dishes which are widely recognized as optimal culture substrates. Calcein was incorporated into the bone minerals fabricated by MSCs cultured on both substrates to show green emission under fluorescence microscopy. The fluorescence intensity was quantified with an image analyser during culture periods. These results indicate that the surfaces of titanium showed a high adhesion/proliferation potential to MSCs and that the titanium effectively supported the osteogenic differentiation of MSCs comparable to TCPS dishes. Therefore, the titanium is an effective scaffold that is applicable in bone reconstruction surgery.  相似文献   

6.
Bone repair is a major concern in reconstructive surgery. Transplants containing osteogenically committed mesenchymal stem cells (MSCs) provide an alternative source to the currently used autologous bone transplants which have limited supply and require additional surgery to the patient. A major drawback, however is the lack of a critical mass of cells needed for successful transplantation. The purpose of the present study was to test the effects of FGF2 and FGF9 on expansion and differentiation of MSCs in order to establish an optimal culture protocol resulting in sufficient committed osteogenic cells required for successful in vivo transplantation. Bone marrow-derived MSCs cultured in αMEM medium supplemented with osteogenic supplements for up to three passages (control medium), were additionally treated with FGF2 and FGF9 in various combinations. Cultures were evaluated for viability, calcium deposition and in vivo osteogenic capacity by testing subcutaneous transplants in nude mice. FGF2 had a positive effect on the proliferative capacity of cultured MSCs compared to FGF9 and control medium treated cultures. Cultures treated with FGF2 followed by FGF9 showed an increased amount of extracted Alizarin red indicating greater osteogenic differentiation. Moreover, the osteogenic capacity of cultured cells transplanted in immunodeficient mice revealed that cells that were subjected to treatment with FGF2 in the first two passages and subsequently to FGF9 in the last passage only, were more successful in forming new bone. It is concluded that the protocol using FGF2 prior to FGF9 is beneficial to cell expansion and commitment, resulting in higher in vivo bone formation for successful bone tissue engineering.  相似文献   

7.
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.  相似文献   

8.
Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF(165/121) antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair.  相似文献   

9.
Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway   总被引:1,自引:0,他引:1  
The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness and cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.  相似文献   

10.
11.
12.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

13.
14.
Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We previously demonstrated that bone morphogenetic protein (BMP) 9 is one of the most potent and yet least characterized BMPs that are able to induce osteogenic differentiation of MSCs both in vitro and in vivo. Here, we conducted gene expression-profiling analysis and identified that Hey1 of the hairy/Enhancer of split-related repressor protein basic helix-loop-helix family was among the most significantly up-regulated early targets in BMP9-stimulated MSCs. We demonstrated that Hey1 expression was up-regulated at the immediate early stage of BMP9-induced osteogenic differentiation. Chromatin immunoprecipitation analysis indicated that Hey1 may be a direct target of the BMP9-induced Smad signaling pathway. Silencing Hey1 expression diminished BMP9-induced osteogenic differentiation both in vitro and in vivo and led to chondrogenic differentiation. Likewise, constitutive Hey1 expression augmented BMP9-mediated bone matrix mineralization. Hey1 and Runx2 were shown to act synergistically in BMP9-induced osteogenic differentiation, and Runx2 expression significantly decreased in the absence of Hey1, suggesting that Runx2 may function downstream of Hey1. Accordingly, the defective osteogenic differentiation caused by Hey1 knockdown was rescued by exogenous Runx2 expression. Thus, our findings suggest that Hey1, through its interplay with Runx2, may play an important role in regulating BMP9-induced osteoblast lineage differentiation of MSCs.  相似文献   

15.
Slow vascularization often impedes the viability and function of engineered bone replacements. Prevascularization is a promising way to solve this problem. In this study, a new process was developed by integrating microcarrier culture and coculture to fabricate pre‐vascularized bone microtissues with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs). Initially, coculture medium and cell ratio between MSCs and HUVECs were optimized in tissue culture plates concerning cell proliferation, osteogenesis and angiogenesis. Subsequently, cells were seeded onto CultiSpher S microcarriers in spinner flasks and subjected to a two‐stage (proliferative‐osteogenic) culture process for four weeks. Both cells proliferated and functioned well in chosen medium and a 1 : 1 ratio between MSCs and HUVECs was chosen for better angiogenesis. After four weeks of culture in spinner flasks, the microtissues were formed with high cellularity, evenly distributed cells and tube formation ability. While coculture with HUVECs exerted an inhibitory effect on osteogenic differentiation of MSCs, with downregulated alkaline phosphatase activity, mineralization and gene expression of COLI, RUNX2 and OCN, this could be attenuated by employing a delayed seeding strategy of HUVECs against MSCs during the microtissue fabrication process. Conclusion: Collectively, this work established an effective method to fabricate pre‐vascularized bone microtissues, which would lay a solid foundation for subsequent development of vascularized tissue grafts for bone regeneration.  相似文献   

16.
Mesenchymal stem cells (MSCs) are considered to be one of the most promising therapeutic cell sources as they encompass a plasticity of multiple cell lineages. The challenge in using these cells lies in developing well-defined protocols for directing cellular differentiation to generate a desired lineage. In this study, we investigated the effect of 5-azacytidine, a DNA demethylating agent, on osteogenic differentiation of MSCs. The cells were exposed to 5-azacytidine in culture medium for 24 h prior to osteogenic induction. Osteogenic differentiation was determined by several the appearance of a number of osteogenesis characteristics, including gene expression, ALP activity, and calcium mineralization. Pretreatment of MSCs with 5-azacytidine significantly facilitated osteogenic differentiation and was accompanied by hypomethylation of genomic DNA and increased osteogenic gene expression. Taking dlx5 as a representative, methylation alterations of the “CpG island shore” in the promoter caused by 5-azacytidine appeared to contribute to osteogenic differentiation.  相似文献   

17.
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.  相似文献   

18.
The mechanisms by which multipotent mesenchymal stromal cells (MSCs) contribute to tissue repair following transplantation into host tissues remains poorly understood. Current concepts suggest that, in addition to differentiation into cells of the host tissues, MSCs also generate trophic factors that modulate host tissue microenvironment to aid in the repair process. In this communication, we assessed whether factors secreted by MSCs undergoing osteogenic differentiation induce expression of osteoblast markers in exogenous MSCs as well as their migration. Murine MSCs were cultured in osteogenic medium, and at different time points, medium conditioned by the cells was collected and assessed for its effects on differentiation and migration of exogenous MSCs. In addition, we determined whether MSCs infused into mice femurs expressed genes encoding for factors predicted to play a role in paracrine activities. The results showed that MSCs maintained in osteogenic medium, secreted factors at specific time points that induced alkaline phosphatase activity (ALP) in exogenous MSCs as well as their migration. MSCs infused into mice femurs and retrieved at different days expressed genes that encoded predicted factors that play a role in cell differentiation and migration. Neutralizing antibodies to bone morphogenetic protein-2 (BMP-2) led to the decrease in ALP activity by exogenous MSCs. These data demonstrated that, as MSCs differentiate toward osteogenic lineage, they secrete factors that induce recruitment and differentiation of endogenous progenitors. These data reveal mechanisms by which donor MSCs may contribute to the bone reparative process and provide a platform for designing approaches for stem cell therapies of musculoskeletal disorders.  相似文献   

19.
Antibiotic-loaded acrylic bone cement is widely used in total joint replacement to reduce infections. Walking results in cyclic loading, which has been suggested to stimulate antibiotic release. The goal of this study is to compare antibiotic release from cyclically loaded bone cement with the release from unloaded bone cement. Two models of the frontal aspect of a femoral stem were cemented with CMW 1 Radiopaque G, Palacos R-G and Palamed G. Both were immersed in water, and the gentamicin concentration in the water was monitored. One model was cyclically loaded at 5 Hz during immersion achieving physiological stresses in the bone cement mantle. After 10.8 x 10(6) cycles, initial release of gentamicin from Palamed G was increased significantly for loaded over unloaded, but not from CMW 1 Radiopaque G and Palacos R-G.  相似文献   

20.
The initial attachment of mesenchymal stem cells (MSCs) to substrates and osteogenic differentiation are supported by culture on a hydroxyapatite substrate. Cell attachment areas of rat MSCs after 2 h of culture on hydroxyapatite substrates with various microstructures and the osteogenic differentiation activity thereafter were measured. The perceived outcome was that, after 2 h of culture, rat MSCs with a small attachment area would have a high osteogenic differentiation activity, whereas those with a large attachment area would have a low osteogenic differentiation activity. Furthermore, rat MSCs with a small attachment area had many cytoplasmic processes, while those with a large attachment area revealed clear stress fibers and focal contacts. These results suggest that cell attachment area of rat MSCs after 2 h of culture has a strong effect on the osteogenic differentiation of rat MSCs. Thus, the measurement of cell attachment area after 2 h of culture could become valuable for estimating the osteogenic differentiation activity of rat MSCs thereafter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号