首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large excitatory synapses are found at specific points in the neuronal circuits of the auditory brainstem, to enable fast information transfer and the preservation of acoustic timing information. The extracellular cues and signaling mechanisms that lead to the development of these specialized synaptic connections, exemplified by the calyx of Held in the medial nucleus of the trapezoid body (MNTB), are still largely unknown. Here, we investigate the role of BMP signaling for the early development of the ventral cochlear nucleus (VCN) and MNTB, and for the initial formation of the calyx of Held synaptic connection. We used conditional alleles of two BMP type‐1 receptors in the background of a constitutive BMPR1b knock‐out (KO), or else a conditional allele of SMAD4. The conditional alleles were recombined by the Krox20Cre mouse line that is active around mid‐gestation in rhombomeres (r) 3 and 5 from which the VCN and MNTB are derived; alternatively, virus‐mediated Cre‐expression was performed early postnatally in the VCN. The data show that embryonic SMAD‐dependent BMP‐signaling in r3 and r5 contributes to the histogenesis of auditory brainstem nuclei. On the other hand, BMP‐receptor signaling early postnatally in presynaptic neurons of the calyx of Held projection is necessary for correct axon branch retraction, which suggests a cell‐autonomous role of presynaptic BMP‐receptors in synapse elimination at the developing calyx of Held. Thus, our work dissects developmentally early and late roles of BMP‐signaling for the formation of auditory brainstem nuclei, and the highly specialized synaptic connectivity in these structures.  相似文献   

2.
Despite the outstanding auditory capabilities of dolphins, there is only limited information available on the cytology of the auditory brain stem nuclei in these animals. Here, we investigated the cochlear nuclei (CN) of five brains of common dolphins (Delphinus delphis) and La Plata dolphins (Pontoporia blainvillei) using cell and fiber stain microslide series representing the three main anatomical planes. In general, the CN in dolphins comprise the same set of subnuclei as in other mammals. However, the volume ratio of the dorsal cochlear nucleus (DCN) in relation to the ventral cochlear nucleus (VCN) of dolphins represents a minimum among the mammals examined so far. Because, for example, in cats the DCN is necessary for reflexive orientation of the head and pinnae towards a sound source, the massive restrictions in head movability in dolphins and the absence of outer ears may be correlated with the reduction of the DCN. Moreover, the same set of main neuron types were found in the dolphin CN as in other mammals, including octopus and multipolar cells. Because the latter two types of neurons are thought to be involved in the recognition of complex sounds, including speech, we suggest that, in dolphins, they may be involved in the processing of their communication signals. Comparison of the toothed whale species studied here revealed that large spherical cells were present in the La Plata dolphin but absent in the common dolphin. These neurons are known to be engaged in the processing of low‐frequency sounds in terrestrial mammals. Accordingly, in the common dolphin, the absence of large spherical cells seems to be correlated with a shift of its auditory spectrum into the high‐frequency range above 20 kHz. The existence of large spherical cells in the VCN of the La Plata dolphin, however, is enigmatic asthis species uses frequencies around 130 kHz. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
The human cochlear nuclei are composed of a ventral and a dorsal nucleus which are similar, though not identical, in their cytoarchitecture to those of other mammals. The ventral cochlear nucleus (VCN) consists of a rostral area of spherical cells, a central area of multipolar and globular cells, a posterior area of octopus cells, and laterodorsal cap of small neurons. The interareal boundaries are less distinct in man than in the cat. The central region of multipolar cells and the cap area of small cells constitute the bulk of the human VCN. The spherical, globular, and octopus cells appear relatively less numerous in man than in other mammals. The dorsal cochlear nucleus (DCN) in man is relatively large, but lacks the typical stratification seen in other mammals, with only vestiges of the granular and molecular layers remaining. Virtually the entire DCN consists of an area of cochlear fiber neuropil containing pyramidal cells, small neurons, and occasional giant cells. The pyramidal cells have lost their typical radial orientation and lie scattered within the cochlear neuropil. Thus the entire human DCN may be equivalent to layers 2 and 3 of this nucleus in other mammals. In spite of the relatively large DCN, the acoustic striae appear small. This is in contrast to the large trapezoid body leaving the VCN. Intrinsic and descending fiber pathways to the cochlear nuclei are not clearly defined and may be less prominent in man than in the cat.  相似文献   

4.
To determine the level at which certain response characteristics originate, we compared monaural auditory responses of neurons in ventral cochlear nucleus, nuclei of lateral lemniscus and inferior colliculus. Characteristics examined were sharpness of frequency tuning, latency variability for individual neurons and range of latencies across neurons.Exceptionally broad tuning curves were found in the nuclei of the lateral lemniscus, while exceptionally narrow tuning curves were found in the inferior colliculus. Neither specialized tuning characteristic was found in the ventral cochlear nuclei.All neurons in the columnar division of the ventral nucleus of the lateral lemniscus maintained low variability of latency over a broad range of stimulus conditions. Some neurons in the cochlear nucleus (12%) and some in the inferior colliculus (15%) had low variability in latency but only at best frequency.Range of latencies across neurons was small in the ventral cochlear nucleus (1.3–5.7 ms), intermediate in the nuclei of the lateral lemniscus (1.7–19.8 ms) and greatest in the inferior colliculus (2.9–42.0 ms).We conclude that, in the nuclei of the lateral lemniscus and in the inferior colliculus, unique tuning and timing properties are built up from ascending inputs.Abbreviations AVCN anteroventral cochlear nucleus - BF best frequency - CV coefficient of variation - DCN dorsal cochlear nucleus - FM frequency modulation - IC inferior colliculus - NLL nuclei of lateral lemniscus - PSTH post stimulus time histogram - PVCN posteroventral cochlear nucleus - SD standard deviation - SPL sound pressure level - VCN ventral cochlear nuclei - VNLLc ventral nucleus of the lateral lemniscus, columnar division  相似文献   

5.
Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1-/- mice, an animal model of FXS. We found that Fmr1-/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1-/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1-/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1-/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem.  相似文献   

6.
Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.  相似文献   

7.
Precision in auditory brainstem connectivity underlies sound localization. Cochlear activity is transmitted to the ventral cochlear nucleus (VCN) in the mammalian brainstem via the auditory nerve. VCN globular bushy cells project to the contralateral medial nucleus of the trapezoid body (MNTB), where specialized axons terminals, the calyces of Held, encapsulate MNTB principal neurons. The VCN-MNTB pathway is an essential component of the circuitry used to compute interaural intensity differences that are used for localizing sounds. When input from one ear is removed during early postnatal development, auditory brainstem circuitry displays robust anatomical plasticity. The molecular mechanisms that control the development of auditory brainstem circuitry and the developmental plasticity of these pathways are poorly understood. In this study we examined the role of EphB signaling in the development of the VCN-MNTB projection and in the reorganization of this pathway after unilateral deafferentation. We found that EphB2 and EphB3 reverse signaling are critical for the normal development of the projection from VCN to MNTB, but that successful circuit assembly most likely relies upon the coordinated function of many EphB proteins. We have also found that ephrin-B reverse signaling repels induced projections to the ipsilateral MNTB after unilateral deafferentation, suggesting that similar mechanisms regulate these two processes.  相似文献   

8.
Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.  相似文献   

9.
Histogenesis of the auditory system requires extensive molecular orchestration. Recently, Dicer1, an essential gene for generation of microRNAs, and miR-96 were shown to be important for development of the peripheral auditory system. Here, we investigated their role for the formation of the auditory brainstem. Egr2::Cre-mediated early embryonic ablation of Dicer1 caused severe disruption of auditory brainstem structures. In adult animals, the volume of the cochlear nucleus complex (CNC) was reduced by 73.5%. This decrease is in part attributed to the lack of the microneuronal shell. In contrast, fusiform cells, which similar to the granular cells of the microneural shell are derived from Egr2 positive cells, were still present. The volume reduction of the CNC was already present at birth (67.2% decrease). The superior olivary complex was also drastically affected in these mice. Nissl staining as well as Vglut1 and Calbindin 1 immunolabeling revealed that principal SOC nuclei such as the medial nucleus of the trapezoid body and the lateral superior olive were absent. Only choline acetyltransferase positive neurons of the olivocochlear bundle were observed as a densely packed cell group in the ventrolateral area of the SOC. Mid-embryonic ablation of Dicer1 in the ventral cochlear nucleus by Atoh7::Cre-mediated recombination resulted in normal formation of the cochlear nucleus complex, indicating an early embryonic requirement of Dicer1. Quantitative RT-PCR analysis of miR-96 demonstrated low expression in the embryonic brainstem and up-regulation thereafter, suggesting that other microRNAs are required for proper histogenesis of the auditory brainstem. Together our data identify a critical role of Dicer activity during embryonic development of the auditory brainstem.  相似文献   

10.
A subset of neurons in the cochlear nucleus (CN) of the auditory brainstem has the ability to enhance the auditory nerve''s temporal representation of stimulating sounds. These neurons reside in the ventral region of the CN (VCN) and are usually known as highly synchronized, or high-sync, neurons. Most published reports about the existence and properties of high-sync neurons are based on recordings performed on a VCN output tract—not the VCN itself—of cats. In other species, comprehensive studies detailing the properties of high-sync neurons, or even acknowledging their existence, are missing.Examination of the responses of a population of VCN neurons in chinchillas revealed that a subset of those neurons have temporal properties similar to high-sync neurons in the cat. Phase locking and entrainment—the ability of a neuron to fire action potentials at a certain stimulus phase and at almost every stimulus period, respectively—have similar maximum values in cats and chinchillas. Ranges of characteristic frequencies for high-sync neurons in chinchillas and cats extend up to 600 and 1000 Hz, respectively. Enhancement of temporal processing relative to auditory nerve fibers (ANFs), which has been shown previously in cats using tonal and white-noise stimuli, is also demonstrated here in the responses of VCN neurons to synthetic and spoken vowel sounds.Along with the large amount of phase locking displayed by some VCN neurons there occurs a deterioration in the spectral representation of the stimuli (tones or vowels). High-sync neurons exhibit a greater distortion in their responses to tones or vowels than do other types of VCN neurons and auditory nerve fibers.Standard deviations of first-spike latency measured in responses of high-sync neurons are lower than similar values measured in ANFs'' responses. This might indicate a role of high-sync neurons in other tasks beyond sound localization.  相似文献   

11.
Investigation into the use of virus-mediated gene transfer to arrest or reverse hearing loss has largely been relegated to the peripheral auditory system. Few studies have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem, which contains second order neurons of the auditory pathway, is a potential site for gene transfer. In this protocol, a technique for direct and maximal exposure of the murine DCN via a posterior fossa approach is demonstrated. This approach allows for either acute or survival surgery. Following direct visualization of the DCN, a host of experiments are possible, including injection of opsins into the cochlear nucleus and subsequent stimulation by an optical fiber coupled to a blue light laser. Other neurophysiology experiments, such as electrical stimulation and neural injector tracings are also feasible. The level of visualization and the duration of stimulation achievable make this approach applicable to a wide range of experiments.  相似文献   

12.
Lesion-induced cochlear damage can result in synaptic outgrowth in the ventral cochlear nucleus (VCN). Tinnitus may be associated with the synaptic outgrowth and hyperactivity in the VCN. However, it remains unclear how hearing loss triggers structural synaptic modifications in the VCN of rats subjected to salicylate-induced tinnitus. To address this issue, we evaluated tinnitus-like behavior in rats after salicylate treatment and compared the amplitude of the distortion product evoked otoacoustic emission (DPOAE) and auditory brainstem response (ABR) between control and treated rats. Moreover, we observed the changes in the synaptic ultrastructure and in the expression levels of growth-associated protein (GAP-43), brain-derived neurotrophic factor (BDNF), the microglial marker Iba-1 and glial fibrillary acidic protein (GFAP) in the VCN. After salicylate treatment (300 mg/kg/day for 4 and 8 days), analysis of the gap prepulse inhibition of the acoustic startle showed that the rats were experiencing tinnitus. The changes in the DPOAE and ABR amplitude indicated an improvement in cochlear sensitivity and a reduction in auditory input following salicylate treatment. The treated rats displayed more synaptic vesicles and longer postsynaptic density in the VCN than the control rats. We observed that the GAP-43 expression, predominantly from medial olivocochlear (MOC) neurons, was significantly up-regulated, and that BDNF- and Iba-1-immunoreactive cells were persistently decreased after salicylate administration. Furthermore, GFAP-immunoreactive astrocytes, which is associated with synaptic regrowth, was significantly increased in the treated groups. Our study revealed that reduced auditory nerve activity triggers synaptic outgrowth and hyperactivity in the VCN via a MOC neural feedback circuit. Structural synaptic modifications may be a reflexive process that compensates for the reduced auditory input after salicylate administration. However, massive increases in excitatory synapses in the VCN may represent a detrimental process that causes central hyperactivity, leading to tinnitus.  相似文献   

13.
During the development of periphery auditory circuitry, spiral ganglion neurons (SGNs) form a spatially precise pattern of innervation of cochlear hair cells (HCs), which is an essential structural foundation for central auditory processing. However, molecular mechanisms underlying the developmental formation of this precise innervation pattern remain not well understood. Here, we specifically examined the involvement of Eph family members in cochlear development. By performing RNA‐sequencing for different types of cochlear cell, in situ hybridization, and immunohistochemistry, we found that EphA7 was strongly expressed in a large subset of SGNs. In EphA7 deletion mice, there was a reduction in the number of inner radial bundles originating from SGNs and projecting to HCs as well as in the number of ribbon synapses on inner hair cells (IHCs), as compared with wild‐type or heterozygous mutant mice, attributable to fewer type I afferent fibers. The overall activity of the auditory nerve in EphA7 deletion mice was also reduced, although there was no significant change in the hearing intensity threshold. In vitro analysis further suggested that the reduced innervation of HCs by SGNs could be attributed to a role of EphA7 in regulating outgrowth of SGN neurites as knocking down EphA7 in SGNs resulted in diminished SGN fibers. In addition, suppressing the activity of ERK1/2, a potential downstream target of EphA7 signaling, either with specific inhibitors in cultured explants or by knocking out Prkg1, also resulted in reduced SGN fibers. Together, our results suggest that EphA7 plays an important role in the developmental formation of cochlear innervation pattern through controlling SGN fiber ontogeny. Such regulation may contribute to the salience level of auditory signals presented to the central auditory system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 452–469, 2016  相似文献   

14.
Using histochemical and immunohistochemical techniques, distribution of activity of oxidative mitochondrial enzyme cytochrome oxidase (CO) and of immunoreactivity to calcium-binding proteins has been studied in spiral ganglion and auditory nuclei of brainstem in two turtle species. It has been shown that immunoreactivity to calbindin, parvalbumin, and calretinin in neurons and neuropil of nuclei of cochlear and superior olivary complexes, in nucleus of lateral lemniscus, and in spiral ganglion neurons coincides topographically with the high CO activity. The similarity of the studied metabolic and neurochemical characteristics of these auditory centers in reptiles, birds, and mammals indicates the existence of some common principles of their organization in amniotes in spite of phylogenetic differences and peculiarities of specialization of the auditory system in different species.  相似文献   

15.
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.  相似文献   

16.
Korn MJ  Koppel SJ  Cramer KS 《PloS one》2011,6(11):e27383
Neurons in nucleus laminaris (NL) receive binaural, tonotopically matched input from nucleus magnocelluaris (NM) onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15), which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP) in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM) on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.  相似文献   

17.
18.
Using histochemical and immunohistochemical techniques, distribution of activity of oxidative mitochondrial enzyme cytochrome oxidase (CO) and calcium-binding proteins-immunoreactivity was studied in the spiral ganglion and auditory nuclei of brainstem in two turtle species. Calbindin-, parvalbumin-and calretinin-immunoreactivity in neurons and neuropil of cochlear, supraolivary complexes, the lateral lemniscal nucleus and neuropil of spiral ganglion is shown to coincide topographically with high activity of CO. Similarity of the studied metabolic and neuro-chemical characteristics of these auditory centers in reptiles, birds and mammals suggests some general principles of their organization in amniotes, despite phylogenetic differences and peculiarities of auditory system in different species.  相似文献   

19.
Summary The characteristic frequencies of single auditory neurons in Caiman crocodilus (South American Alligator) range from 70 to 2,900 Hz. These neurons in the cochlear nuclei show a striking tonotopic organization which parallels that in birds. The sensitivity curve of all neurons and the number of neurons in each frequency range show features similar to those of birds and mammals.Supported by NSF. grant GB 5697. I thank Dr. Mark Konishi for overseeing this work.  相似文献   

20.

Objectives

The functionality of cochlear implants (CI) depends, among others, on the number and excitability of surviving spiral ganglion neurons (SGN). The spatial separation between the SGN, located in the bony axis of the inner ear, and the CI, which is inserted in the scala tympani, results in suboptimal performance of CI patients and may be decreased by attracting the SGN neurites towards the electrode contacts. Neurotrophic factors (NTFs) can support neuronal survival and neurite outgrowth.

Methods

Since brain-derived neurotrophic factor (BDNF) is well known for its neuroprotective effect and ciliary neurotrophic factor (CNTF) increases neurite outgrowth, we evaluated if the combination of BDNF and CNTF leads to an enhanced neuronal survival with extended neurite outgrowth. Both NTFs were added in effective high concentrations (BDNF 50ng/ml, CNTF 100ng/ml), alone and in combination, to cultured dissociated SGN of neonatal rats for 48 hours.

Results

The neuronal survival and neurite outgrowth were significantly higher in SGN treated with the combination of the two NTFs compared to treatment with each factor alone. Additionally, with respect to the morphology, the combination of BDNF and CNTF leads to a significantly higher number of bipolar neurons and a decreased number of neurons without neurites in culture.

Conclusion

The combination of BDNF and CNTF shows a great potential to increase the neuronal survival and the number of bipolar neurons in vitro and to regenerate retracted nerve fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号