首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shao K  Ding W  Wang F  Li H  Ma D  Wang H 《PloS one》2011,6(9):e24910
Aptamers are short RNA or DNA oligonucleotides which can bind with different targets. Typically, they are selected from a large number of random DNA sequence libraries. The main strategy to obtain aptamers is systematic evolution of ligands by exponential enrichment (SELEX). Low efficiency is one of the limitations for conventional PCR amplification of random DNA sequence library in aptamer selection because of relative low products and high by-products formation efficiency. Here, we developed emulsion PCR for aptamer selection. With this method, the by-products formation decreased tremendously to an undetectable level, while the products formation increased significantly. Our results indicated that by-products in conventional PCR amplification were from primer-product and product-product hybridization. In emulsion PCR, we can completely avoid the product-product hybridization and avoid the most of primer-product hybridization if the conditions were optimized. In addition, it also showed that the molecule ratio of template to compartment was crucial to by-product formation efficiency in emulsion PCR amplification. Furthermore, the concentration of the Taq DNA polymerase in the emulsion PCR mixture had a significant impact on product formation efficiency. So, the results of our study indicated that emulsion PCR could improve the efficiency of SELEX.  相似文献   

2.
Analytical applications of aptamers   总被引:17,自引:0,他引:17  
So far, several bio-analytical methods have used nucleic acid probes to detect specific sequences in RNA or DNA targets through hybridisation. More recently, specific nucleic acids, aptamers, selected from random sequence pools, have been shown to bind non-nucleic acid targets, such as small molecules or proteins. The development of in vitro selection and amplification techniques has allowed the identification of specific aptamers, which bind to the target molecules with high affinity. Many small organic molecules with molecular weights from 100 to 10,000 Da have been shown to be good targets for selection. Moreover, aptamers can be selected against difficult target haptens, such as toxins or prions. The selected aptamers can bind to their targets with high affinity and even discriminate between closely related targets.

Aptamers can thus be considered as a valid alternative to antibodies or other bio-mimetic receptors, for the development of biosensors and other analytical methods. The production of aptamers is commonly performed by the SELEX (systematic evolution of ligands by exponential enrichment) process, which, starting from large libraries of oligonucleotides, allows the isolation of large amounts of functional nucleic acids by an iterative process of in vitro selection and subsequent amplification through polymerase chain reaction.

Aptamers are suitable for applications based on molecular recognition as analytical, diagnostic and therapeutic tools. In this review, the main analytical methods, which have been developed using aptamers, will be discussed together with an overview on the aptamer selection process.  相似文献   


3.
4.

Background

SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection.

Methodology/Principal Findings

To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEX''s amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection.

Conclusions/Significance

Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers.  相似文献   

5.
以完整细胞为靶子的SELEX技术研究进展   总被引:2,自引:0,他引:2  
指数富集的配体系统进化(SELEX)是一种从大容量寡核苷酸文库中经反复分离扩增步骤得到针对靶分子的高亲和力、高特异性核酸配基——适配体的体外筛选技术。自1990年以来,SELEX技术得到了迅猛发展,筛选的靶分子已由最初的单一物质发展到完整的动物细胞、细菌病原体等复杂靶子。以完整细胞为靶子的SELEX技术有其独特的技术优势,可以在筛选细胞上特定靶分子未知的情况下进行筛选,为药物筛选、临床诊断、疾病治疗和基础医学研究等带来了新的思路和方法。随着对适配体研究的深入,尤其是纳米材料与其相结合应用,该技术将在肿瘤诊断治疗及微生物检测领域具有更为广泛的应用前景。  相似文献   

6.
7.
This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.  相似文献   

8.
To expand the scope of nucleic acid aptamers as a tool for precise molecular recognition, functional groups that are not naturally present in nucleic acid molecules are desired. For in vitro selection these new functional groups must be compatible with the selection process. The present method allows the introduction of succinimide activated side chains at internal amino groups of 2'-amino-pyrimidine-RNA in a combinatorial fashion that is compatible with enzymatic re-amplification.  相似文献   

9.
Shi H  Fan X  Ni Z  Lis JT 《RNA (New York, N.Y.)》2002,8(11):1461-1470
Iterative cycles of in vitro selection and amplification allow rare functional nucleic acid molecules, aptamers, to be isolated from large sequence pools. Here we present an analysis of the progression of a selection experiment that simultaneously yielded two families of RNA aptamers against two disparate targets: the intended target protein (B52/SRp55) and the partitioning matrix. We tracked the sequence abundance and binding activity to reveal the enrichment of the aptamers through successive generations of selected pools. The two aptamer families showed distinct trajectories of evolution, as did members within a single family. We also developed a method to control the relative abundance of an aptamer family in selected pools. This method, involving specific ribonuclease digestion, can be used to reduce the background selection for aptamers that bind the matrix. Additionally, it can be used to isolate a full spectrum of aptamers in a sequential and exhaustive manner for all the different targets in a mixture.  相似文献   

10.
Fluorescence correlation spectroscopy is an attractive tool for monitoring molecular interactions in solution. We report here a new and highly sensitive method for studying the interaction of aptamers with their targets using this technique. In vitro selection technology is a combinatorial method for the generation of nucleic acid receptors (aptamers) that are capable of binding to various target molecules. Using the in vitro selection approach we isolated RNAs which bind to the antibiotic moenomycin with high affinity. The formation of RNA-moenomycin complexes was studied by fluorescence correlation spectroscopy with a tetramethylrhodamine-labeled derivative of moenomycin.  相似文献   

11.
Aptamers are nucleic acid molecules selected in vitro to bind a particular ligand. While numerous experimental studies have examined the sequences, structures, and functions of individual aptamers, considerably fewer studies have applied bioinformatics approaches to try to infer more general principles from these individual studies. We have used a large Aptamer Database to parse the contributions of both random and constant regions to the secondary structures of more than 2000 aptamers. We find that the constant, primer-binding regions do not, in general, contribute significantly to aptamer structures. These results suggest that (a) binding function is not contributed to nor constrained by constant regions; (b) in consequence, the landscape of functional binding sequences is sparse but robust, favoring scenarios for short, functional nucleic acid sequences near origins; and (c) many pool designs for the selection of aptamers are likely to prove robust.  相似文献   

12.
即时检测(point-of-care testing,POCT)是一种检测成本低、检测速度快、准确度高、能自我采样获得临床诊断结果的新型诊断技术。该技术在临床诊断、病情监控与疫情防控等领域发挥了重要作用。核酸适配体是一种能够特异性识别多种靶标的分子探针,具有易合成、批间差异小、易实现信号放大等突出优势,是生物医学传感器中重要的分子识别元件。本文概述了核酸适配体探针的现有筛选方法和进展,总结了核酸适配体POCT传感器信号放大策略,着重介绍了各类核酸适配体传感器在POCT领域的应用现状,并对核酸适配体POCT传感器的发展前景进行了展望。  相似文献   

13.
Advances in SELEX and application of aptamers in the central nervous system   总被引:4,自引:0,他引:4  
SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a screening technique that involves the progressive selection of highly specific ligands by repeated rounds of partition and amplification from a large combinatorial nucleic acid library. The products of the selection are called aptamers, which are short single stranded DNA or RNA molecules, binding with high affinity, attributed to their specific three-dimensional shapes, to a large variety of targets, ranging from small molecules to complex mixtures. Various improvement of the original SELEX method described in 1990 have been obtained recently, such as capillary electrophoresis SELEX, Toggle-SELEX, Tailored-SELEX, Photo-SELEX, and others. These new variants greatly shorten time of selection and improve aptamer affinity and specificity. Such aptamers have great potential as detecting and/or diagnostic reagents. Furthermore, some aptamers specifically inhibit biological functions of targeted proteins, and are considered as potent therapeutic lead structures evaluated in preclinical disease models. Recently, one aptamer has been approved by Food and Drug Administration of US for treating age-related macular degeneration. This review presents recent advances in the field of SELEX with special emphasis on applications of aptamers as analytical, diagnostic and therapeutic tools in the central nervous system.  相似文献   

14.

Background

Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen®, an inhibitor of vascular endothelial growth factor (VEGF) for the treatment of age related macular degeneration (AMD). Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly in one-step, technique is required for developing aptamers in limited time period.

Principal Findings

Herein, we present a simple one-step selection of DNA aptamers against α-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 µM.

Conclusion

We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer unlike the time consuming conventional SELEX-based approach. The most important application of this method is that chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This method could equally be suitable for developing RNA aptamers.  相似文献   

15.
Structure-switching signaling aptamers are nucleic acids that change shape upon binding to a specific ligand. Previously, we applied a new in vitro selection strategy to isolate structure-switching RNA aptamers responsive to the aminoglycoside antibiotic tobramycin. Here, we report the results of mutational analysis, secondary structure modeling, and ligand-specificity studies that suggest a mechanism for tobramycin-triggered structure switching.  相似文献   

16.
Many nucleic acid enzymes and aptamers have modular architectures that allow them to retain their functions when combined with other nucleotide sequences. This modular function facilitates the engineering of RNAs and DNAs that have more complex functions. We sought to create new DNA aptamers that bind cellulose to provide a module for immobilizing DNAs. Cellulose has been used in a variety of applications ranging from coatings and films to pharmaceutical preparations, and therefore DNA aptamers that bind cellulose might enable new applications. We used in vitro selection to isolate aptamers from a pool of random-sequence DNAs and subjected two distinct clones to additional rounds of mutagenesis and selection. One aptamer (CELAPT 14) was chosen for sequence minimization and more detailed biochemical analysis. CELAPT 14 aptamer variants exhibit robust binding both to cellulose powder and paper. Also, an allosteric aptamer construct was engineered that exhibits ATP-mediated cellulose binding during paper chromatography.  相似文献   

17.
Automated selection of anti-protein aptamers   总被引:12,自引:0,他引:12  
The in vitro selection of nucleic acid binding species (aptamers) is frequently repetitive, time-consuming, and poorly adapted to high-throughput applications. We have adapted automated workstations to select anti-protein aptamers; as an example, we demonstrated the selection of anti-lysozyme aptamers that function as efficient inhibitors of cell lysis. The increases in throughput brought about by automation should potentiate the application of aptamer technology to the rapidly growing field of proteomics.  相似文献   

18.
Aptamers are single‐stranded synthetic oligonucleotides that are able to capture their target molecule with high affinity and specificity. Therefore, they can be thought of as nucleic acid‐based alternative to antibodies, which have several advantages over their amino acid‐based counterparts. Consequently, aptamers can be used in different applications based on molecular recognition including affinity separations. This review will summarize the state‐of‐the‐art in aptamer‐based affinity separations; will discuss the current limitations and will highlight possible future prospects. The first part will point out the advantages of aptamers in downstream processing. Here, the properties of aptamers will be discussed along with their implications on downstream processing from a user's point of view. In the second part, a brief summary of the literature is given with focus on aptamer‐based separation of proteins. Finally, some drawbacks of aptamers will be illustrated and possibilities to overcome these limitations will be suggested. New technologies in the fields of aptamer selection and synthesis are expected to further promote the use of aptamers as affinity ligands in downstream processing.  相似文献   

19.

Background

SELEX is an iterative process in which highly diverse synthetic nucleic acid libraries are selected over many rounds to finally identify aptamers with desired properties. However, little is understood as how binders are enriched during the selection course. Next-generation sequencing offers the opportunity to open the black box and observe a large part of the population dynamics during the selection process.

Methodology

We have performed a semi-automated SELEX procedure on the model target streptavidin starting with a synthetic DNA oligonucleotide library and compared results obtained by the conventional analysis via cloning and Sanger sequencing with next-generation sequencing. In order to follow the population dynamics during the selection, pools from all selection rounds were barcoded and sequenced in parallel.

Conclusions

High affinity aptamers can be readily identified simply by copy number enrichment in the first selection rounds. Based on our results, we suggest a new selection scheme that avoids a high number of iterative selection rounds while reducing time, PCR bias, and artifacts.  相似文献   

20.
Aptamers are functional nucleic acids possessing high affinity and specificity to their cognate ligands and are isolated from a library of nucleic acids by iterative rounds of selection and amplification. In the current study, we used surface plasmon resonance (Biacore) as an efficient methodology for selecting aptamers that bind to hemagglutinin (HA) of human influenza virus. This procedure allowed us to monitor and select the target-bound aptamers specifically and simultaneously. These studies not only yielded an aptamer that binds to the HA of influenza virus with high affinity but also revealed the consensus sequence, 5'-GUCGNCNU(N)(2-3)GUA-3, for HA recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号