首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery of new antimalarials with transmission blocking activity remains a key issue in efforts to control malaria and eventually eradicate the disease. Recently, high-throughput screening (HTS) assays have been successfully applied to Plasmodium falciparum asexual stages to screen millions of compounds, with the identification of thousands of new active molecules, some of which are already in clinical phases. The same approach has now been applied to identify compounds that are active against P. falciparum gametocytes, the parasite stage responsible for transmission. This study reports screening results for the Tres Cantos Antimalarial Set (TCAMS), of approximately 13,533 molecules, against P. falciparum stage V gametocytes. Secondary confirmation and cytotoxicity assays led to the identification of 98 selective molecules with dual activity against gametocytes and asexual stages. Hit compounds were chemically clustered and analyzed for appropriate physicochemical properties. The TCAMS chemical space around the prioritized hits was also studied. A selection of hit compounds was assessed ex vivo in the standard membrane feeding assay and demonstrated complete block in transmission. As a result of this effort, new chemical structures not connected to previously described antimalarials have been identified. This new set of compounds may serve as starting points for future drug discovery programs as well as tool compounds for identifying new modes of action involved in malaria transmission.  相似文献   

2.
3.

Background

Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA) of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs.

Methods and Principal Findings

Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs) and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ) activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ) overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set.

Conclusions/Significance

Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.  相似文献   

4.
5.
The antimalarial activity of benzo[a]phenazines synthesized from 1,2-naphthoquinone, lapachol, beta-lapachone and several derivatives have been tested against Plasmodium falciparum in vitro using isolates of parasites with various susceptibilities to chloroquine and/or mefloquine. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]-hipoxanthine in comparison to controls with no drugs, always testing in parallel chloroquine, a standard antimalarial. Among seven benzophenazines tested, four had significant in vitro activities; important, the parasites resistant to chloroquine were more susceptible to the active phenazines in vitro. The doses of phenazines causing 50% inhibition of parasite growth varied from 1.67 to 9.44 microM. The two most active ones were also tested in vivo against Plasmodium berghei in mice, in parallel with lapachol and beta-lapachone. The 3-sulfonic acid-beta-lapachone-derived phenazine was the most active causing up to 98% inhibition of parasitaemia in long term treatment (7 doses) subcutaneously, whereas the phenazine from 3-bromo-beta-lapachone was inactive. Thus, these simple phenazines, containing polar (-Br,-I) and ionizable (-SO(3)H, -OH) groups, easily synthesized from cheap, natural or synthetic precursors (lapachol and beta-lapachone), at rather low cost, provide prototypes for development of new antimalarials aiming the chloroquine resistant parasites.  相似文献   

6.
《Cell host & microbe》2020,27(4):671-680.e2
  1. Download : Download high-res image (239KB)
  2. Download : Download full-size image
  相似文献   

7.
Drug target identification is a critical step toward understanding the mechanism of action of a drug, which can help one improve the drug''s current therapeutic regime and expand the drug''s therapeutic potential. However, current in vitro affinity-chromatography-based and in vivo activity-based protein profiling approaches generally face difficulties in discriminating specific drug targets from nonspecific ones. Here we describe a novel approach combining isobaric tags for relative and absolute quantitation with clickable activity-based protein profiling to specifically and comprehensively identify the protein targets of andrographolide (Andro), a natural product with known anti-inflammation and anti-cancer effects, in live cancer cells. We identified a spectrum of specific targets of Andro, which furthered our understanding of the mechanism of action of the drug. Our findings, validated through cell migration and invasion assays, showed that Andro has a potential novel application as a tumor metastasis inhibitor. Moreover, we have unveiled the target binding mechanism of Andro with a combination of drug analog synthesis, protein engineering, and mass-spectrometry-based approaches and determined the drug-binding sites of two protein targets, NF-κB and actin.As most drugs exert pharmacological effects by interacting with their target proteins, the identification of these target proteins is a critical step in unraveling the mechanisms of drug action. It is also imperative for our understanding of the pharmacodynamics of a known drug, suggesting potentially unrevealed actions and thus refining future clinical applications of the substance. Traditional approaches used to identify protein targets of a drug typically utilize immobilized drug affinity chromatography coupled with mass spectrometry (MS)1 (1, 2). These methods can be applied to cell lysates, but not in an in vivo setting, because of the requirement of a solid support. In vitro target profiling might not accurately reflect the drug''s actions in the in vivo physiological environment. To overcome this limitation, several groups have used activity-based protein profiling (ABPP) combined with bio-orthogonal click chemistry to identify drug targets both in vitro and in vivo (supplemental Fig. S1) (315). ABPP probes exert their functions via covalent reactions with the target proteins or photoaffinity-based labeling via the incorporation of photoreactive groups. With the increasing sensitivity of modern MS platforms, low-abundance protein targets can be successfully identified. Although both conventional affinity chromatography and recent ABPP-based methods allow us to detect a set of candidate protein targets for a drug, it remains difficult to discriminate specific interactions from nonspecific ones. Thus, more time and effort are needed for subsequent validation because of the presence of a large number of nonspecific binders. Therefore, there is an urgent need to develop comprehensive unbiased methods for specific target identification. Quantitative proteomics has been used to profile enriched kinases using cell-lysate-based kinobead pull-down. However, these types of experiments are mainly suitable for studying kinase inhibitors (16). Recently, proteomics methods based on stable isotope labeling of amino acids in cell culture (SILAC) have been applied to determine the specific binders of small molecules or proteins with certain post-translational modifications (1719). These studies have shed light on how quantitative proteomics can improve the specificity of target protein identification. Nevertheless, because of the inherent limitations of SILAC, the complete incorporation of isotopic amino acids via such an approach takes a long time. Furthermore, it is also extremely difficult to apply the SILAC approach to tissue and body fluid samples, which are of particular relevance to biomedical research.Here we introduce a clickable activity-based protein profiling (ICABPP) approach based on the use of isobaric tags for relative and absolute quantitation (iTRAQ) for the unbiased specific and comprehensive identification of target proteins in live cells. iTRAQ is a stable isotope labeling approach for multiplexed quantitative proteome profiling (20). An overview of the technique is illustrated in Fig. 1A. In this assay, cells are first incubated with a clickable probe or with DMSO, which serves as a negative control. After the probe permeates the cell, and covalently binds to its dedicated in situ targets, the washed cells are lysed, clicked with biotin-N3 tag, and enriched through avidin pull-down in parallel. The beads are washed thoroughly, and the bond proteins are directly digested on the beads with trypsin. The resulting peptides are labeled with their respective iTRAQ reagents, pooled together for further identification and quantification via LC-MS/MS. This technique enabled us to discriminate specific protein targets from nonspecific, and endogenously biotinylated proteins. Biological replicates of probe- or DMSO-treated samples are included to overcome experimental variations. As shown in Fig. 1B, nonspecific binding proteins'' iTRAQ reporters have equal or similar intensities, whereas specific target proteins enriched by the probe show highly differential intensities relative to the DMSO-treated control samples (as illustrated by the significantly higher reporter intensities of 116 and 117 versus 113 and 114 shown in Fig. 1B). The multiplexing nature of the iTRAQ-based chemical proteomics method allows replicated enrichments to be compared within a single LC-MS/MS analysis, thereby increasing the accuracy of specific target identifications, and minimizing experimental errors.Open in a separate windowFig. 1.Identifying specific drug targets using ICABPP approach in live cells. A, live cells were treated with DMSO, and clickable probe in duplicate. Cells were lysed and tagged with biotin-N3 using click chemistry in parallel. The biotin-bearing target proteins were enriched through avidin pull-down, and directly digested on beads. The resulting peptides of the two biological replicates of control pulled-down samples were labeled with 113 and 114, respectively, and two probe pulled-down samples were labeled with 116 and 117, respectively. The labeled peptides were combined in order to be identified, and quantified via LC-MS/MS. B, for the nonspecific targets, the iTRAQ reporters showed similar intensities, whereas for the specific targets, the reporters showed highly differential intensities.In this context, the ICABPP approach was applied to identify protein targets of andrographolide (Andro) (Fig. 2), a natural product with known anti-inflammation, and anti-cancer effects (2125), in live cancer cells. A spectrum of 75 potential Andro targets was identified with high confidence, which suggested that Andro may exert anti-cancer effects by acting on multiple targets to interfere with several cellular signaling pathways. Two targets, NF-κB and β-actin, were validated by in vitro binding assay, and direct binding site mapping. Furthermore, our data revealed a novel mechanism of Andro in suppressing tumor metastasis.Open in a separate windowFig. 2.Chemical structures of Andro, reduced Andro analog RA, and Andro-based clickable ABPP probes P1 and P2.  相似文献   

8.

Background

A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-119, the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175.

Method

Healthy malaria naïve Indian male subjects aged 18–45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10μg, 25μg and 50μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180.

Results

JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-119. Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain.

Conclusion

Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-119 construct needs to be optimised to improve its immunogenicity.

Trial Registration

Clinical Trial Registry, India CTRI/2010/091/000301  相似文献   

9.
The microtubular stabilizing agent docetaxel (Taxotere™) is known to inhibit the intraerythrocytic development of Plasmodium falciparum. To investigate the mechanism(s) of inhibition, we analyzed the structural organization of the mitotic spindle by immunofluorescence and electron microscopy. When 30 μM docetaxel was applied for five hours on ring forms, alterations in the mitotic spindles leading to abnormal nuclear divisions were observed. At the trophozoite- and schizont-stage, docetaxel pulses prevent mitosis by stabilizing microtubular structures associated with the mitotic apparatus, giving abnormal spindles. However, this inhibition did not interfere with parasite DNA synthesis indicating the absence of a checkpoint that couples exit from mitosis with proper spindle assembly as observed in higher eukaryotic cells. In parallel, intraerythrocytic concentration of docetaxel was measured in parasitized erythrocytes, after incubation of cells with 3H-docetaxel for five hours. It was found to be 14-fold increased at the ring-stage of infected erythrocytes compared to normal ones, 170-fold increased at the trophozoite-stage and 1,500-fold increased at the schizont-stage. Our data show that, even though the overall intracellular concentration of docetaxel is low in docetaxel-pulsed rings, the agent might be sufficient to disturb the spindle organization. However, the existence of targets for docetaxel other than mitotic spindle microtubules. i.e. erythrocyte membrane components, could interfere with mitotic spindle formation  相似文献   

10.
Biochemistry (Moscow) - Specific adhesion (sequestration) of Plasmodium falciparum parasite-infected erythrocytes (IEs) in deep vascular beds can cause severe complications resulting in death. This...  相似文献   

11.

Background

The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches.

Methods and Findings

In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales.Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349–552 million) clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC), and Myanmar (Burma), where 1.405 billion people are at risk.Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national estimates were ranked according to their relative uncertainty and replaced by surveillance-based estimates in the least certain half, 98% of the global clinical burden continued to be estimated by cartographic techniques.

Conclusions and Significance

Cartographic approaches to burden estimation provide a globally consistent measure of malaria morbidity of known fidelity, and they represent the only plausible method in those malaria-endemic countries with nonfunctional national surveillance. Unacceptable uncertainty in the clinical burden of malaria in only four countries confounds our ability to evaluate needs and monitor progress toward international targets for malaria control at the global scale. National prevalence surveys in each nation would reduce this uncertainty profoundly. Opportunities for further reducing uncertainty in clinical burden estimates by hybridizing alternative burden estimation procedures are also evaluated. Please see later in the article for the Editors'' Summary  相似文献   

12.
13.
Measurement of malaria burden is fraught with complexity, due to the natural history of the disease, delays in seeking treatment or failure of case management. Attempts to establish an appropriate case definition for a malaria episode has often resulted in ambiguities and challenges because of poor information about treatment seeking, patterns of infection, recurrence of fever and asymptomatic infection. While the primary reason for treating malaria is to reduce disease burden, the effects of treatment are generally ignored in estimates of the burden of malaria morbidity, which are usually presented in terms of numbers of clinical cases or episodes, with the main data sources being reports from health facilities and parasite prevalence surveys. The use of burden estimates that do not consider effects of treatment, leads to under-estimation of the impact of improvements in case management. Official estimates of burden very likely massively underestimate the impact of the roll-out of ACT as first-line therapy across Africa. This paper proposes a novel approach for estimating burden of disease based on the point prevalence of malaria attributable disease, or equivalently, the days with malaria fever in unit time. The technique makes use of data available from standard community surveys, analyses of fever patterns in malaria therapy patients, and data on recall bias. Application of this approach to data from Zambia for 2009–2010 gave an estimate of 2.6 (95% credible interval: 1.5–3.7) malaria attributable fever days per child-year. The estimates of recall bias, and of the numbers of days with illness contributing to single illness recalls, could be applied more generally. To obtain valid estimates of the overall malaria burden using these methods, there remains a need for surveys to include the whole range of ages of hosts in the population and for data on seasonality patterns in confirmed case series.  相似文献   

14.
15.
16.
Plasmodium falciparum is a major cause of severe malaria in Southeast Asia, however, there is limited information regarding clinical factors associated with the severity of falciparum malaria from this region. We performed a retrospective case-control study to compare clinical factors and outcomes between patients with severe and non-severe malaria, and to identify clinical factors associated with the requirement for intensive care unit (ICU) admission of patients with severe falciparum malaria among hospitalized adults in Southeast Asia. A total of 255 patients with falciparum malaria in the Hospital for Tropical Diseases in Bangkok, Thailand between 2006 and 2012 were included. We identified 104 patients with severe malaria (cases) and 151 patients with non-severe malaria (controls). Patients with falciparum malaria with following clinical and laboratory characteristics on admission (1) referrals, (2) no prior history of malaria, (3) body temperature of >38.5°C, (4) white blood cell counts >10×109/µL, (5) presence of schizonts in peripheral blood smears, and (6) albumin concentrations of <3.5 g/dL, were more likely to develop severe malaria (P<0.05). Among patients with severe malaria, patients who met ≥3 of the 2010 WHO criteria had sensitivity of 79.2% and specificity of 81.8% for requiring ICU admission. Multivariate analysis identified the following as independent associated factors for severe malaria requiring ICU admission; (1) ethnicity of Thai [odds ratio (OR) = 3.601, 95% confidence interval (CI) = 1.011–12.822] or Myanmar [OR = 3.610, 95% CI = 1.138–11.445]; (2) referrals [OR = 3.571, 95% CI = 1.306–9.762]; (3) no prior history of malaria [OR = 5.887, 95% CI = 1.354–25.594]; and (4) albumin concentrations of <3.5 g/dL [OR = 7.200, 95% CI = 1.802–28.759]. Our findings are important for the clinical management of patients with malaria because it can help early identification of patients that could develop severe malaria and require ICU admission. Early identification and the timely initiation of appropriate treatments may well improve the outcomes and reduce the mortality of these patients.  相似文献   

17.
18.
Most of the drugs in use against Plasmodium falciparum share similar modes of action and, consequently, there is a need to identify alternative potential drug targets. Here, we focus on the apicoplast, a malarial plastid-like organelle of algal source which evolved through secondary endosymbiosis. We undertake a systematic in silico target-based identification approach for detecting drugs already approved for clinical use in humans that may be able to interfere with the P. falciparum apicoplast. The P. falciparum genome database GeneDB was used to compile a list of ≈600 proteins containing apicoplast signal peptides. Each of these proteins was treated as a potential drug target and its predicted sequence was used to interrogate three different freely available databases (Therapeutic Target Database, DrugBank and STITCH3.1) that provide synoptic data on drugs and their primary or putative drug targets. We were able to identify several drugs that are expected to interact with forty-seven (47) peptides predicted to be involved in the biology of the P. falciparum apicoplast. Fifteen (15) of these putative targets are predicted to have affinity to drugs that are already approved for clinical use but have never been evaluated against malaria parasites. We suggest that some of these drugs should be experimentally tested and/or serve as leads for engineering new antimalarials.  相似文献   

19.
The retinal Müller glial cells, can enhance the survival and activity of neurons, especially of retinal ganglion cells (RGCs), which are the neurons affected in diseases such as glaucoma, diabetes, and retinal ischemia. It has been demonstrated that Müller glia release neurotrophic factors that support RGC survival, yet many of these factors remain to be elucidated. To define these neurotrophic factors, a quantitative proteomic approach was adopted aiming at identifying neuroprotective proteins. First, the conditioned medium from porcine Müller cells cultured in vitro under three different conditions were isolated and these conditioned media were tested for their capacity to promote survival of primary adult RGCs in culture. Mass spectrometry was used to identify and quantify proteins in the conditioned medium, and osteopontin (SPP1), clusterin (CLU), and basigin (BSG) were selected as candidate neuroprotective factors. SPP1 and BSG significantly enhance RGC survival in vitro, indicating that the survival‐promoting activity of the Müller cell secretome is multifactorial, and that SPP1 and BSG contribute to this activity. Thus, the quantitative proteomics strategy identify proteins secreted by Müller glia that are potentially novel neuroprotectants, and it may also serve to identify other bioactive proteins or molecular markers.  相似文献   

20.
A multiplex PCR was designed for the differential diagnosis of the two parasite species by targeting the 18S rRNA gene with a set of primer combinations, amplifying DNA fragments of 1451-bp and 833-bp for P. falciparum and P. vivax, respectively. The sensitivity of this PCR test was high, as minimal as 0.1 parasite per one microliter of blood sample and a minimum of four copies of the target gene could be detected. For the diagnosis of mixed infection of two Plasmodium spp., there were no apparent competition or cross-reaction between the majority and minority Plasmodium species. The multiplex PCR was evaluated on 210 clinical samples and 60 normal controls. The PCR test yielded highly concordant results with microscopic examination, with the only one exception of a mixed (P. falciparum plus P. vivax) infection case, which was diagnosed as a single infection of P. falciparum by microscopy. We propose that the multiplex PCR is a sensitive, specific, and rapid tool that can serve as a useful differential diagnostic tool for detecting P. falciparum and P. vivax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号