首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bile acid receptor farnesoid X receptor (FXR) is a key regulator of hepatic defense mechanisms against bile acids. A comprehensive study addressing the role of FXR in the coordinated regulation of adaptive mechanisms including biosynthesis, metabolism, and alternative export together with their functional significance is lacking. We therefore fed FXR knockout (FXR(-/-)) mice with cholic acid (CA) and ursodeoxycholic acid (UDCA). Bile acid synthesis and hydroxylation were assessed by real-time RT-PCR for cytochrome P-450 (Cyp)7a1, Cyp3a11, and Cyp2b10 and mass spectrometry-gas chromatography for determination of bile acid composition. Expression of the export systems multidrug resistance proteins (Mrp)4-6 in the liver and kidney and the recently identified basoalteral bile acid transporter, organic solute transporter (Ost-alpha/Ost-beta), in the liver, kidney, and intestine was also investigated. CA and UDCA repressed Cyp7a1 in FXR(+/+) mice and to lesser extents in FXR(-/-) mice and induced Cyp3a11 and Cyp2b10 independent of FXR. CA and UDCA were hydroxylated in both genotypes. CA induced Ost-alpha/Ost-beta in the liver, kidney, and ileum in FXR(+/+) but not FXR(-/-) mice, whereas UDCA had only minor effects. Mrp4 induction in the liver and kidney correlated with bile acid levels and was observed in UDCA-fed and CA-fed FXR(-/-) animals but not in CA-fed FXR(+/+) animals. Mrp5/6 remained unaffected by bile acid treatment. In conclusion, we identified Ost-alpha/Ost-beta as a novel FXR target. Absent Ost-alpha/Ost-beta induction in CA-fed FXR(-/-) animals may contribute to increased liver injury in these animals. The induction of bile acid hydroxylation and Mrp4 was independent of FXR but could not counteract liver toxicity sufficiently. Limited effects of UDCA on Ost-alpha/Ost-beta may jeopardize its therapeutic efficacy.  相似文献   

2.
Obeticholic acid (OCA) is a farnesoid-X-receptor (FXR) ligand, shown effective in reducing steatosis and fibrosis in NASH patients. However, OCA causes major side effects including pruritus, while increases the risk for liver decompensation in cirrhotic patients. Ursodeoxycholic acid (UDCA), is a safe and unexpensive bile acid used in the treatment of liver disorders whose mechanism of action is poorly defined. Here we have compared the effects of OCA and UDCA in a mouse model of NASH. In mice exposed to a diet rich in fat/cholesterol and fructose (HFD-F), treatment with OCA or UDCA effectively prevented body weight gain, insulin resistance, as demonstrated by OGTT, and AST plasma levels. After 12 weeks HFD-F mice developed liver microvesicular steatosis, inflammation and mild fibrosis, increased expression of inflammatory (TNFα, IL6, F4/80) and fibrosis (αSma, Col1α1, Tgfβ) markers, reduced liver expression of FXR, dysregulated liver FXR signaling and elevated levels of Tauro-α and β-muricholic acid (T-α and βMCA), two FXR antagonists in mice. Both compounds prevented these changes and improved liver histopathology. OCA reduced primary bile acid synthesis worsening the T-CA/T-βMCA ratio. UDCA effectively transactivated GPBAR1 in vitro. By RNAseq analysis we found that among over 2400 genes modulated by the HFD-F, only 32 and 60 genes were modulated by OCA and UDCA, with only 3 genes (Dbp, Adh7, Osgin1) being modulated by both agents. Both agents partially prevented the intestinal dysbiosis.ConclusionsUDCA is a GPBAR1 ligand and exerts beneficial effects in a rodent model of NASH by activating non-overlapping pathway with OCA.  相似文献   

3.
Isoursodeoxycholic acid (isoUDCA), the 3 beta-epimer of ursodeoxycholic acid (UDCA), may have pharmaceutical potential because of its similar hydrophilicity and in vitro cytoprotection as compared with UDCA. We compared metabolism and effects on cholestasis of UDCA and isoUDCA in experimental cholestasis in rats. Cholestasis was induced by bile duct ligation. For bile flow and biliary bile acid analysis, UDCA or isoUDCA were infused intraduodenally. For the study of chronic effects, chow was supplemented with 2.5 g/kg UDCA or isoUDCA for 3 weeks. Sham-operated animals served as controls. IsoUDCA became completely converted to UDCA in the liver. Choleresis and biliary bile acids were the same after the intraduodenal administration of either compound. Oral administration of UDCA or isoUDCA significantly improved liver biochemistry but not clinical and histological parameters in chronic cholestasis. The decrease of serum cholic acid in control animals was more pronounced after isoUDCA (-93%) than after UDCA (-76%). Only after UDCA, this decrease was compensated by increases of UDCA, beta-muricholic acid (MCA), and Delta(22)-beta-MCA. Our results show that isoUDCA has the same effect on choleresis and liver biochemistry as UDCA. IsoUDCA features pro-drug characteristics of UDCA and causes compared to the latter lower serum bile acid concentrations in non-cholestatic animals.  相似文献   

4.
Gamboge has been developed as an injectable drug for cancer treatment in China. In this study, the inhibition ratio and their IC50 values of two derivatives from Gamboge in hepatocellular carcinoma (HCC) were determined. Proteomic approach was employed to reveal the target proteins of these two derivatives, gambogic acid (GA), and gambogenic acid (GEA). HCC cells were cultured under varied conditions with the addition of either GA or GEA. Twenty differentially expressed proteins were identified and the four most distinctly expressed proteins were further validated by Western blotting. GA and GEA revealed inhibitory effects on HCC cell proliferation. The expression of cyclin‐dependent kinase 4 inhibitor A and guanine nucleotide‐binding protein β subunit 1 were upregulated by both xanthones, whilst the expression of 14‐3‐3 protein sigma and stathmin 1 (STMN1) were downregulated. Furthermore, overexpression of STMN1 in HCC cells decreased their sensitivity, whilst small interfering RNAs targeting STMN1 enhanced their sensitivity to GA and GEA. In conclusion, our study suggested for the first time that STMN1 might be a major target for GA and GEA in combating HCC. Further investigation may lead to a new generation of anticancer drugs exerting synergistic effect with conventional therapy, thus to promote treatment efficacy.  相似文献   

5.

Background

The members of inhibitor of apoptosis proteins (IAPs) family are key negative regulators of apoptosis. Overexpression of IAPs are found in hepatocellular carcinoma (HCC), and can contribute to chemotherapy resistance and recurrence of HCC. Small-molecule Second mitochondria-derived activator of caspases (Smac) mimetics have recently emerged as novel anticancer drugs through targeting IAPs. The specific aims of this study were to 1) examine the anticancer activity of Smac mimetics as a single agent and in combination with chemotherapy in HCC cells, and 2) investigate the mechanism of anticancer action of Smac mimetics.

Methods

Four HCC cell lines, including SMMC-7721, BEL-7402, HepG2 and Hep3B, and 12 primary HCC cells were used in this study. Smac mimetic SM-164 was used to treat HCC cells. Cell viability, cell death induction and clonal formation assays were used to evaluate the anticancer activity. Western blotting analysis and a pancaspase inhibitor were used to investigate the mechanisms.

Results

Although SM-164 induced complete cIAP-1 degradation, it displayed weak inhibitory effects on the viability of HCC cells. Nevertheless, SM-164 considerably potentiated Apo2 ligand or TNF-related apoptosis-inducing ligand (APO2L/TRAIL)- and Doxorubicin-mediated anticancer activity in HCC cells. Mechanistic studies demonstrated that SM-164 in combination with chemotherapeutic agents resulted in enhanced activation of caspases-9, -3 and cleavage of poly ADP-ribose polymerase (PARP), and also led to decreased AKT activation.

Conclusions

Smac mimetics can enhance chemotherapeutic-mediated anticancer activity by enhancing apoptosis signaling and suppressing survival signaling in HCC cells. This study suggests Smac mimetics are potential therapeutic agents for HCC.  相似文献   

6.
摘要 目的:分析富含半胱氨酸的酸性分泌蛋白类似蛋白1(SPARCL1)对非小细胞肺癌(NSCLC)细胞增殖、凋亡、侵袭的影响,并探讨分裂原活化抑制剂(MEK)/细胞外调节蛋白激酶(ERK)通路在其中发挥的作用。方法:收集2019年9月~2021年6月期间本院接受手术治疗的84例NSCLC患者癌组织与相应癌旁组织,实时定量逆转录聚合酶链反应(qRT-PCR)法测定并比较各组织以及正常肺上皮细胞HBEpiC、NSCLC细胞A549、HCC827、H1299、H292中SPARCL1 信使RNA(mRNA)表达水平,选取A549、HCC827培养并分组,分为对照组、NC siRNA组、SPARCL1 siRNA组、U0126组(MEK/ERK特异性抑制剂)、SPARCL1 siRNA加U0126组,细胞计数法(CCK8)以及平板克隆法测定A549、HCC827细胞增殖,流式细胞仪测定A549、HCC827细胞凋亡,Transwell小室法测定A549、HCC827细胞侵袭能力,蛋白质印迹法(western blot)检测SPARCL1、p-MEK、MEK、p-ERK1/2、ERK1/2蛋白表达。结果:SPARCL1在NSCLC组织中mRNA表达水平低于癌旁组织(P<0.05);与HBEpiC细胞相比,NSCLC细胞A549、HCC827、H1299、H292细胞中SPARCL1 mRNA表达水平降低(P<0.05);与对照组相比,SPARCL1 siRNA组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率降低(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达升高(P<0.05),U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05);与SPARCL1 siRNA组相比,SPARCL1 siRNA加U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05)。结论:SPARCL1可能通过调控MEK/ERK通路影响NSCLC A549、HCC827细胞增殖、侵袭与凋亡。  相似文献   

7.
Non-alcoholic steatosis (NAFLD) and steatohepatitis (NASH) are two highly prevalent human disorders for which therapy remains suboptimal. Bile acids play an essential role in regulating liver metabolism, and several bile acids-based therapy are currently investigated for their potential therapeutic efficacy in NAFLD/NASH. Bile acids exert their functions, at least in part, by modulating two main receptors the Farnesoid-x-receptor (FXR) and the G protein-coupled receptor, GPBAR1. In the present study we have compared the pharmacological effects of two bile acids, the ursodeoxycholic acid (UDCA) and its derivative norUDCA, in a model of NAFLD/NASH induced by feeding mice with a Western diet for 12 weeks. The results of these studies demonstrated that both UDCA and norUDCA protected against development of steatosis and fibrosis, but did not reduce the hepatocytes ballooning nor the development of a pro-atherogenic lipid profile. Both agents reduced liver lipogenesis and ameliorated insulin sensitivity and adipocytes signaling as shown by increased expression of adiponectin. Mechanistically, UDCA acts as weak GPBAR1 agonist, while norUDCA exerted no effect on both GPBAR1 and FXR. In vivo administration of UDCA resets bile acid synthesis and promotes a shift toward bile acids species that are GPBAR1 agonists, UDCA, TUDCA and hyodeoxycholic acid, and increases GLP1 expression in the ileum. In contrast norUDCA is poorly metabolized exerting a minimal impact on GPBAR1 signaling. Together, these data, highlight the potential role of UDCA and norUDCA in treating of NAFLD, though these beneficial effects are supported by different mechanisms.  相似文献   

8.
Ursodeoxycholic acid (UDCA) is a bile acid (BA) used for cholesterol gallstone dissolution. Since epidemiological evidence indicates that BAs can be involved in the etiology of colorectal cancer, we investigated the effects of UDCA and its physiologically produced taurine conjugate tauroursodeoxycholic acid (TUDCA) on human lymphocyte cultures in terms of genetic damage in the form of micronuclei (MN) production, cell cycle modifications and induction of apoptosis. With respect to controls, treatment with UDCA (from 10 microg/ml) caused a dose-related increase in MN, whereas TUDCA caused no significant increase (up to 1000 microg/ml). Fluorescence in situ hybridization (FISH) analysis using pancentromeric probes suggested that UDCA exerts aneugenic activity. Bromodeoxyuridine/Hoechst flow cytometry showed that both BA significantly inhibit cell cycle progression (UDCA at 100 microg/ml, and TUDCA, more markedly at 300-1000 microg/ml). Neither UDCA nor TUDCA affected induction of apoptosis, as evaluated by the Annexin-V-Fluos assay. We conclude that UDCA is potentially genotoxic. However, taking into account the characteristics of other physiological BA, our findings are in line with the concept that long-term UDCA treatment may be safely administered. The multi-assay approach reported here could be useful in the toxicological evaluation of newly developed BA analogs as candidates for pharmacological use.  相似文献   

9.
This study aims to examine the impact of ursodeoxycholic acid (UDCA) on pulmonary edema and explore the underlying molecular mechanisms. The effects of UDCA on pulmonary edema were assessed through hematoxylin and eosin (H&E) staining, lung dry/wet (W/D) ratio, TNF-α/IL-1β levels of bronchoalveolar lavage fluid (BALF), protein expression of epithelial sodium channel (ENaC), and Na+/K+-ATPase. Besides, the detailed mechanisms were explored in primary rat alveolar type (AT) II epithelial cells by determining the effects of BOC-2 (ALX [lipoxin A4 receptor] inhibitor), Rp-cAMP (cAMP inhibitor), LY294002 (PI3K inhibitor), and H89 (PKA inhibitor) on the therapeutic effects of UDCA against lipopolysaccharide (LPS)-induced changes. Histological examination suggested that LPS-induced lung injury was obviously attenuated by UDCA. BALF TNF-α/IL-1β levels and lung W/D ratios were decreased by UDCA in LPS model rats. UDCA stimulated alveolar fluid clearance (AFC) though the upregulation of ENaC and Na+/K+-ATPase. BOC-2, Rp-cAMP, and LY294002 largely suppressed the therapeutic effects of UDCA. Significant attenuation of pulmonary edema and lung inflammation was revealed in LPS-challenged rats after the UDCA treatment. The therapeutic efficacy of UDCA against LPS was mainly achieved through the ALX/cAMP/PI3K pathway. Our results suggested that UDCA might be a potential drug for the treatment of pulmonary edema induced by LPS.  相似文献   

10.
脂肪细胞增强子结合蛋白2(AEBP2)作为多梳抑制复合物2(PRC2)的组成蛋白质,参与多种肿瘤细胞的增殖和迁移,然而其在肝癌中的作用尚不清楚。本研究基于UALCAN和Kaplan-Meier Plotter数据库分析发现,AEBP2在肝癌组织中高表达,并且与患者的不良预后呈正相关。实时荧光定量PCR和蛋白质印迹结果证实,AEBP2在肝癌细胞中的表达高于正常肝细胞。在HepG2和Huh-7细胞中转染AEBP2 siRNA,平板克隆、CCK-8、流式细胞术、划痕愈合和Transwell结果显示,沉默AEBP2可以抑制肝癌细胞增殖、迁移和侵袭,并促进细胞凋亡(P<0.05)。免疫荧光检测和蛋白质印迹结果显示,沉默AEBP2能够抑制肝癌细胞上皮-间质转化(EMT)(P<0.05)。生物信息学分析结果表明,AEBP2参与调控PI3K/Akt信号通路。蛋白质印迹结果证实,沉默AEBP2能下调PI3K、p-AKT (S473)、mTOR、MMP-2和MMP-9的蛋白质表达水平(P<0.05)。此外,沉默AEBP2对HepG2细胞迁移和侵袭的影响可被PI3K/Akt通路激动剂胰岛素样生长因子1(IGF-1)部分逆转(P<0.01)。综上所述,AEBP2可能通过调节PI3K/Akt途径促进肝癌细胞增殖和迁移。本研究为AEBP2在肝癌中的作用提供理论依据。  相似文献   

11.
Osteosarcoma (OS) is a very aggressive metastatic pediatric and adolescent tumor. Due to its recurrent development of chemotherapy resistance, clinical outcome for OS patients remains poor. Therefore, discovering more effective anticancer agents is needed. Chlorogenic acid (CGA) is a phenolic compound contained in plant-related products that modulates many cellular functions and inhibits cell proliferation in several cancer types. However, few evidence is available in OS. Here, we investigate the effects of CGA in U2OS, Saos-2, and MG-63 OS cells. By multiple approaches, we demonstrate that CGA acts as anticancer molecule affecting the cell cycle and provoking cell growth inhibition mainly by apoptosis induction. We also provide evidence that CGA strongly activates extracellular-signal-regulated kinase1/2 (ERK1/2). Strikingly, ERK1/2 inhibitor PD98059 sensitizes the cells to CGA. Altogether, our data enforce the evidence of the anticancer activity mediated by CGA and provide the rationale for the development of innovative therapeutic strategies in OS cure.  相似文献   

12.
Sulfation of the 3-hydroxy group is assumed to be a major metabolic route of ursodeoxycholic acid (UDCA) which is used for treating various hepatobiliary diseases. We have developed a sensitive enzyme-linked immunosorbent assay (ELISA) for determining the total amount of nonamidated, glycine- and taurine-amidated ursodeoxycholic acid 3-sulfates (UDCA 3-Suls) using a newly established monoclonal antibody. In this study, 12 kinds of antibody-secreting hybridoma clones were generated by a fusion experiment between P3/NS1/1-Ag4-1 myeloma cells and the spleen cells from a BALB/c or an A/J mouse which had been immunized with a conjugate of nonamidated UDCA 3-Sul and bovine serum albumin. One of the monoclonal antibodies, Ba-10 (γ2a, κ), had suitable binding properties for clinical application, which was group-specific to the UDCA 3-Suls, and showed negligible cross-reactivities with various related bile acids including potentially interfering compounds, namely, the unconjugated UDCA, UDCA 7-N-acetylglucosaminide, the 3-sulfates of cholic acid, chenodeoxycholic acid and deoxycholic acid. The antibody Ba-10 allowed us to develop a sensitive competitive ELISA system whose measurable range was approximately 2–200 pg per assay. A serial dilution study indicated that the ELISA enables the direct measurement of the UDCA 3-Suls in human urine before and after the administration of exogenous UDCA. The daily urinary excretion rate of UDCA 3-Suls from healthy male volunteers (n = 5) was determined to be a mean of 131 ± 61.2 (SD) μg as the nonamidated UDCA 3-Sul equivalent.  相似文献   

13.
Kim JH  Kang NJ  Lee BK  Lee KW  Lee HJ 《Mutation research》2008,638(1-2):175-183
Propyl gallate and its metabolite, gallic acid, are widely used as antioxidants in the food industry, but they have been shown to exhibit liver toxicity and enhance carcinogenesis. In the present study, we investigated the possible undesirable effects of propyl gallate and gallic acid on gap junctional intercellular communication (GJIC), inhibition of which is closely linked to carcinogenesis. Gallic acid and propyl gallate exhibited dose-dependent free-radical-scavenging activities as determined by 1,1-diphenyl-2-picrylhydrazyl- or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-radical-scavenging assays, and the free-radical-scavenging activity of gallic acid was stronger than that of propyl gallate. However, using WB-F344 rat liver epithelial cells, gallic acid inhibited GJIC in a dose-dependent manner, while propyl gallate had no significant effect compared with untreated controls. The gallic-acid-induced inhibition of GJIC was reversible, with a recovery of nearly 65% after 120 min. Gallic acid induced the phosphorylation of connexin 43 (Cx43) and phosphorylation of extracellular-signal-regulated kinase1/2 (ERK1/2). The gallic-acid-induced inhibition of GJIC was attenuated by treatment with mitogen-activated protein kinase kinase inhibitors (U0126 and PD098059). U0126 blocked the gallic-acid-induced phosphorylation of Cx43 and ERK1/2, indicating that the gallic-acid-induced inhibition of GJIC is mediated by phosphorylation of Cx43 via activation of ERK1/2. In addition, gallic-acid-induced inhibition of GJIC was protected by ascorbic acid and quercetin, which might represent a simple example of the different effects of natural antioxidants in carcinogenesis.  相似文献   

14.
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and accounts for the fourth leading cause of all cancer deaths. Scientific evidence has found that plant extracts seem to be a reliable choice due to their multitarget effects against HCC. Juniperus communis has been used for centuries in traditional medicine and its anticancer properties have been reported. As a result, the purpose of the study was to investigate the anticancer effect and mechanism of J. communis extract (JCo extract) on HCC in vitro and in vivo. In the present study, we found that JCo extract inhibited the growth of human HCC cells by inducing cell cycle arrest at the G0/G1 phase, extensive apoptosis and suppressing metastatic protein expressions in HCC cells. Moreover, the combinational treatment of JCo and VP-16 was found to enhance the anticancer effect, revealing that JCo extract might have the potential to be utilized as an adjuvant to promote HCC treatment. Furthermore, in vivo study, JCo extract significantly suppressed HCC tumor growth and extended the lifespan with no or low systemic and pathological toxicity. JCo extract significantly up-regulated the expression of pro-apoptotic proteins and tumor suppressor p53, suppressed VEGF/VEGFR autocrine signaling, down-regulated cell cycle regulatory proteins and MMP2/MMP9 proteins. Overall, our results provide a basis for exploiting JCo extract as a potential anticancer agent against HCC.  相似文献   

15.
Hepatocellular carcinoma (HCC) is a common malignancy, but treatment outcomes have generally remained poor. Specific factors important for the pathogenesis of HCC are incompletely understood. Insulin-like growth factors (IGFs) are potent autocrine and paracrine mitogens for liver cancer cell proliferation, and their bioactivity is reduced by IGF-binding protein 3 (IGFBP-3). In the present study, we report that IGFBP-3 protein levels were either undetectable (28.5%) or low (71.5%) in human HCC samples examined compared with matched non-neoplastic liver tissue by Western blotting. IGFBP-3 was localized to nontumor liver cells by immunohistochemistry with greater immunointensity than neoplastic liver cells. Levels of type I receptor (IGF-IR) were found to be low in approximately 39% of human HCC samples examined compared with matched nontumor tissues. IGF-II was overexpressed in 32%, whereas IGF-I expression was decreased in 100% of HCC samples. In vitro studies revealed that IGF-I and IGF-II induced HepG2 cell proliferation in a dose-dependent manner. Treatment of HepG2 cells with either human recombinant IGFBP-3 (hrIGFBP-3) or IGF-II antibody led to a significant reduction in cell proliferation. Cotreating these cells with hrIGFBP-3 significantly attenuated the mitogenic activity of IGF-I. IGF-I-induced phosphorylation of IGF-IR beta subunit, IRS-1, mitogen-activated protein kinase, Elk-1, and Akt-1 as well as phosphatidylinositol 3'-kinase activity was significantly attenuated when hepG2 cells were pretreated with hrIGFBP-3. Our data indicate that loss of autocrine/paracrine IGFBP-3 loops may lead to HCC tumor growth and suggest that modulating production of the IGFs, IGFBP-3, and IGF-IR may represent a novel approach in the treatment of HCC.  相似文献   

16.
Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells.  相似文献   

17.
Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p<0.01). A more pronounced decrease (23-27%, p<0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p<0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p<0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired.  相似文献   

18.
Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid   总被引:3,自引:0,他引:3  
5-Aminolevulinic acid (ALA) is a heme precursor accumulated in plasma and in organs in acute intermittent porphyria (AIP), a disease associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma (HCC). Liver biopsies of AIP patients showed odd-shaped mitochondria and autophagic vacuoles containing well-preserved mitochondria. ALA yields reactive oxygen species upon metal-catalyzed oxidation and causes in vivo and in vitro impairment of rat liver mitochondria and DNA damage. Using a quantitative polymerase chain reaction assay, we demonstrated that ALA induces a dose-dependent damage in nuclear and mitochondrial DNA in human SVNF fibroblasts and rat PC12 cells. CHO cells treated with ALA also show nuclear DNA damage and human HepG2 cells entered in apoptosis and necrosis induced by ALA and its dimerization product, DHPY. The present data provide additional information on the genotoxicity of ALA, reinforcing the hypothesis that it may be involved in the development of HCC in AIP patients.  相似文献   

19.
Fatty liver disease (hepatosteatosis) is a common early pathology in alcohol-dependent and obese patients. Fatty acid binding protein-4 (FABP4) is normally expressed in adipocytes and macrophages and functions as a regulator of intracellular lipid movement/storage. This study sought to investigate hepatic FABP4 expression and function in alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). Using chronic ethanol fed mouse models and patient samples FABP4 expression was analyzed. Human HCC cells, and HCC cells transfected to express CYP2E1, were exposed to ethanol and analyzed for FABP4 expression, or exposed to rhFABP4 (in the absence/presence of ERK, p38-MAPK or JNK1/2 inhibitors) and cell proliferation and migration measured. Hepatosteatotic-ALD mouse models exhibited increased hepatic FABP4 mRNA and protein levels, with FABP4 expression confirmed in hepatocytes. In HCC cells, CYP2E1-dependent ethanol metabolism induced FABP4 expression in vitro and exogenous rhFABP4 stimulated proliferation and migration, effects abrogated by ERK and JNK1/2 inhibition. Increased FABP4 was also detected in ALD/ALD-HCC patients, but not patients with viral hepatitis/HCC. Collectively these data demonstrate ethanol metabolism induces hepatic FABP4 expression and FABP4 promotes hepatoma cell proliferation/migration. These data suggest liver-derived FABP4 may be an important paracrine-endocrine factor during hepatic foci expansion and/or hepatoma progression in the underlying setting of ALD.  相似文献   

20.
An improved ultra performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method was established for the simultaneous analysis of various bile acids (BA) and applied to investigate liver BA content in C57BL/6 mice fed 1% cholic acid (CA), 0.3% deoxycholic acid (DCA), 0.3% chenodeoxycholic acid (CDCA), 0.3% lithocholic acid (LCA), 3% ursodeoxycholic acid (UDCA), or 2% cholestyramine (resin). Results indicate that mice have a remarkable ability to maintain liver BA concentrations. The BA profiles in mouse livers were similar between CA and DCA feedings, as well as between CDCA and LCA feedings. The mRNA expression of Cytochrome P450 7a1 (Cyp7a1) was suppressed by all BA feedings, whereas Cyp7b1 was suppressed only by CA and UDCA feedings. Gender differences in liver BA composition were observed after feeding CA, DCA, CDCA, and LCA, but they were not prominent after feeding UDCA. Sulfation of CA and CDCA was found at the 7-OH position, and it was increased by feeding CA or CDCA more in male than female mice. In contrast, sulfation of LCA and taurolithocholic acid (TLCA) was female-predominant, and it was increased by feeding UDCA and LCA. In summary, the present systematic study on BA metabolism in mice will aid in interpreting BA-mediated gene regulation and hepatotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号