首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human rhinovirus species C (HRV-C) was recently discovered using molecular diagnostic techniques and is associated with lower respiratory tract disease, particularly in children. HRV-C cannot be propagated in immortalized cell lines, and currently sinus organ culture is the only system described that is permissive to HRV-C infection ex vivo. However, the utility of organ culture for studying HRV-C biology is limited. Here, we report that a previously described HRV-C derived from an infectious cDNA, HRV-C15, infects and propagates in fully differentiated human airway epithelial cells but not in undifferentiated cells. We demonstrate that this differentiated epithelial cell culture system supports infection and replication of a second virus generated from a cDNA clone, HRV-C11. We show that HRV-C15 virions preferentially bind fully differentiated airway epithelial cells, suggesting that the block to replication in undifferentiated cells is at the step of viral entry. Consistent with previous reports, HRV-C15 utilizes a cellular receptor other than ICAM-1 or LDLR for infection of differentiated epithelial cells. Furthermore, we demonstrate that HRV-C15 replication can be inhibited by an HRV 3C protease inhibitor (rupintrivir) but not an HRV capsid inhibitor previously under clinical development (pleconaril). The HRV-C cell culture system described here provides a powerful tool for studying the biology of HRV-C and the discovery and development of HRV-C inhibitors.  相似文献   

2.
ObjectivesHuman airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.MethodsAir-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.ConclusionsALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.  相似文献   

3.
4.
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.  相似文献   

5.
人鼻病毒(Human rhinovirus,HRV)是呼吸道感染的主要病原体之一,明确HRV的致病机制能为有效防控该病毒感染提供科学依据.为确定1B型HRV(human rhinovirus type 1B,HRV1B)感染致宿主细胞的代谢组改变及差异性,本文采用非靶向代谢组学技术研究HRV1B感染人扁桃体上皮细胞UT-SCC-60B和人肺支气管上皮细胞BEAS-2B后代谢组的改变情况.HRV1B感染UT-SCC-60B细胞6h和12h分别有21个差异显著代谢产物(differentially significant metabolites,DSMs)(上调13个、下调8个)和51个DSMs(上调42个、下调9个),HRV1B感染UT-SCC-60B和BEAS-2B细胞6h和12h后,比较分析发现分别有303个DSMs(上调69个,下调234个)和324个DSMs(上调88个,下调236个),未知DSMs占据比例较大.脂肪酸、脂质、氨基酸、核苷酸和糖类的比例随着感染时间的延长而增加,7-酮基脱氧胆酸、溶血磷脂酰胆碱、垂盆草甙、组氨酸-甘氨酸、腺苷酸等涉及到胆汁酸代谢、脂肪酸和脂质代谢、糖代谢、氨基酸代谢和核苷酸代谢.因此,细胞水平表明HRV1B感染改变了人上皮细胞的脂肪酸、脂质、氨基酸、核苷酸和糖类的代谢水平.  相似文献   

6.
Human rhinovirus (HRV) infections are associated with the common cold, occasionally with more serious lower respiratory tract illnesses, and frequently with asthma exacerbations. The clinical features of HRV infection and its association with asthma exacerbation suggest that some HRV disease results from virus-induced host immune responses to infection. To study the HRV-infection-induced host responses and the contribution of these responses to disease, we have developed an in vitro model of HRV infection of human airway epithelial cells (Calu-3 cells) and subsequent exposure of human peripheral blood mononuclear cells (PBMCs) to these infected cells in a two-chamber trans-well tissue culture system. Using this model, we studied HRV 14 (species B) and HRV 16 (species A) induced cytokine and chemokine responses with PBMCs from four healthy adults. Infection of Calu-3 cells with either virus induced HRV-associated increases in FGF-Basic, IL-15, IL-6, IL-28A, ENA-78 and IP-10. The addition of PBMCs to HRV 14-infected cells gave significant increases in MIP-1β, IL-28A, MCP-2, and IFN-α as compared with mock-infected cells. Interestingly, ENA-78 levels were reduced in HRV 14 infected cells that were exposed to PBMCs. Addition of PBMCs to HRV 16-infected cells did not induce MIP-1β, IL-28A and IFN-α efficiently nor did it decrease ENA-78 levels. Our results demonstrate a clear difference between HRV 14 and HRV 16 and the source of PBMCs, in up or down regulation of several cytokines including those that are linked to airway inflammation. Such differences might be one of the reasons for variation in disease associated with different HRV species including variation in their link to asthma exacerbations as suggested by other studies. Further study of immune responses associated with different HRVs and PBMCs from different patient groups, and the mechanisms leading to these differences, should help characterize pathogenesis of HRV disease and generate novel approaches to its treatment.  相似文献   

7.
Viral respiratory infections activate the innate immune response in the airway epithelium through Toll-like receptors (TLRs) and induce airway inflammation, which causes acute exacerbation of asthma. Although increases in IL-17A expression were observed in the airway of severe asthma patients, the interaction between IL-17A and TLR activation in airway epithelium remains poorly understood. In this study, we demonstrated that IL-17A and polyI:C, the ligand of TLR3, synergistically induced the expression of proinflammatory cytokines and chemokines (G-CSF, IL-8, CXCL1, CXCL5, IL-1F9), but not type I interferon (IFN-α1, -β) in primary culture of normal human bronchial epithelial cells. Synergistic induction after co-stimulation with IL-17A and polyI:C was observed from 2 to 24 hours after stimulation. Treatment with cycloheximide or actinomycin D had no effect, suggesting that the synergistic induction occurred without de novo protein synthesis or mRNA stabilization. Inhibition of the TLR3, TLR/TIR-domain-containing adaptor-inducing interferon β (TRIF), NF-κB, and IRF3 pathways decreased the polyI:C- and IL-17A/polyI:C-induced G-CSF and IL-8 mRNA expression. Comparing the levels of mRNA induction between co-treatment with IL-17A/polyI:C and treatment with polyI:C alone, blocking the of NF-κB pathway significantly attenuated the observed synergism. In western blotting analysis, activation of both NF-κB and IRF3 was observed in treatment with polyI:C and co-treatment with IL-17A/polyI:C; moreover, co-treatment with IL-17A/polyI:C augmented IκB-α phosphorylation as compared to polyI:C treatment alone. Collectively, these findings indicate that IL-17A and TLR3 activation cooperate to induce proinflammatory responses in the airway epithelium via TLR3/TRIF-mediated NF-κB/IRF3 activation, and that enhanced activation of the NF-κB pathway plays an essential role in synergistic induction after co-treatment with IL-17A and polyI:C in vitro.  相似文献   

8.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children and causes disease in the elderly and persons with compromised cardiac, pulmonary, or immune systems. Despite the high morbidity rates of RSV infection, no highly effective treatment or vaccine is yet available. The RSV G protein is an important contributor to the disease process. A conserved CX3C chemokine-like motif in G likely contributes to the pathogenesis of disease. Through this motif, G protein binds to CX3CR1 present on various immune cells and affects immune responses to RSV, as has been shown in the mouse model of RSV infection. However, very little is known of the role of RSV CX3C-CX3CR1 interactions in human disease. In this study, we use an in vitro model of human RSV infection comprised of human peripheral blood mononuclear cells (PBMCs) separated by a permeable membrane from human airway epithelial cells (A549) infected with RSV with either an intact CX3C motif (CX3C) or a mutated motif (CX4C). We show that the CX4C virus induces higher levels of type I/III interferon (IFN) in A549 cells, increased IFN-α and tumor necrosis factor alpha (TNF-α) production by human plasmacytoid dendritic cells (pDCs) and monocytes, and increased IFN-γ production in effector/memory T cell subpopulations. Treatment of CX3C virus-infected cells with the F(ab′)2 form of an anti-G monoclonal antibody (MAb) that blocks binding to CX3CR1 gave results similar to those with the CX4C virus. Our data suggest that the RSV G protein CX3C motif impairs innate and adaptive human immune responses and may be important to vaccine and antiviral drug development.  相似文献   

9.
Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are major respiratory pathogens and can concurrently colonize the airways of patients with chronic obstructive diseases, such as cystic fibrosis (CF). Airway epithelial cell signalling is critical to the activation of innate immune responses. In the setting of polymicrobial colonization or infection of the respiratory tract, how epithelial cells integrate different bacterial stimuli remains unknown. Our study examined the inflammatory responses to PA and SA co-stimulations. Immortalised airway epithelial cells (Beas-2B) exposed to bacteria-free filtrates from PA (PAF) induced a robust production of the neutrophil chemoattractant IL-8 while bacteria-free filtrates from SA (SAF) had a minimal effect. Surprisingly, co-stimulation with PAF+SAF demonstrated that SAF strongly inhibited the PAF-driven IL-8 production, showing that SAF has potent anti-inflammatory effects. Similarly SAF decreased IL-8 production induced by the TLR1/TLR2 ligand Pam3CysSK4 but not the TLR4 ligand LPS nor TLR5 ligand flagellin in Beas-2B cells. Moreover, SAF greatly dampened TLR1/TLR2-mediated activation of the NF-κB pathway, but not the p38 MAPK pathway. We observed this SAF-dependent anti-inflammatory activity in several SA clinical strains, as well as in the CF epithelial cell line CFBE41o-. These findings show a novel direct anti-inflammatory effect of SA on airway epithelial cells, highlighting its potential to modulate inflammatory responses in the setting of polymicrobial infections.  相似文献   

10.
11.
Increasing evidence suggests that crosstalk between airway epithelial cells (AEC) and adjacent dendritic cells (DC) tightly regulates airway mucosal DC function in steady state. AEC are known to express multiple immmuno-modulatory factors, though detailed information on how this influences human DC function remains incomplete. We recently demonstrated using an in vitro coculture model that AEC alter differentiation of monocytes into DC in a manner that inhibits expression of potentially damaging Th2 effector function. In the current study, we have extended these findings to examine other aspects of DC function. Using micro-array technology we show that multiple genes important for immune surveillance are significantly over expressed in purified AEC-conditioned DC, compared to control DC. These findings were confirmed by quantitative real time PCR or flow cytometry in an independent sample set. In particular, AEC-conditioned DC showed selective upregulation of chemokines that recruit Th1 cells, but minimal change in chemokines linked to Th2 cell recruitment. AEC-conditioned DC were also characterized by enhanced expression of complement family genes (C1QB, C2, CD59 and SERPING1), Fcγ receptor genes (FCGR1A, FCGR2A, FCGR2B and FCGR2C), signaling lymphocytic activation molecule family member 1 (SLAM), programmed death ligands 1 and 2, CD54 and CD200R1, relative to control DC. These findings suggest that AEC conditioning facilitates the capacity of DC to react to danger signals, to enhance leukocyte recruitment, especially of Th1 effector cells, and to interact with other immune cell populations while minimizing the risks of excessive inflammation leading to tissue damage.  相似文献   

12.
Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS) in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO), in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE) alone (0.4% to 10%) or in combination with a low concentration of LPS (0.1 µg/ml) for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5–120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is reduced by RNO.  相似文献   

13.
Toll-like receptor (TLR1–6) mRNAs are expressed in normal human bronchial epithelial cells with higher basal levels of TLR3. TLR2 mRNA and plasma membrane protein expression was enhanced by pretreatment with Poly IC, a synthetic double-stranded RNA (dsRNA) known to activate TLR3. Poly IC also enhanced mRNA expression of adaptor molecules (MyD88 and TIRAP) and coreceptors (Dectin-1 and CD14) involved in TLR2 signaling. Additionally, mRNA expression of TLR3 and dsRNA-sensing proteins MDA5 and RIG-I increased following Poly IC treatment. In contrast, basal mRNA expression of TLR5 and TLR2 coreceptor CD36 was reduced by 77% and 62%, respectively. ELISA of apical and basolateral solutions from Poly IC-stimulated monolayers revealed significantly higher levels of IL-6 and GM-CSF compared with the TLR2 ligand PAM3CSK4. Pretreatment with anti-TLR2 blocking antibody inhibited the PAM3CSK4-induced increase in IL-6 secretion after Poly IC exposure. An increase in IL-6 secretion was also observed in cells stimulated with Alternaria extract after pretreatment with Poly IC. However, IL-6 secretion was not stimulated by zymosan or lipothechoic acid (LTA). These data demonstrated that upregulation of TLR2 following exposure to dsRNA enhances functional responses of the airway epithelium to certain (PAM3CSK4), but not all (zymosan, LTA) TLR2 ligands and that this is likely due to differences in coreceptor expression.  相似文献   

14.
The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms.  相似文献   

15.
Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family. It is a common cause of respiratory tract infections in children, adults, and immunocompromised patients, for which no specific treatment or vaccine is available. Recent investigations in our lab identified hMPV glycoprotein G as an important virulence factor, as a recombinant virus lacking the G protein (rhMPV-ΔG) exhibited enhanced production of important immune and antiviral mediators, such as cytokines, chemokines and type I interferon (IFN) in airway epithelial cells, and expression of G protein alone inhibits cellular signaling dependent on retinoic induced gene (RIG)-I, a RNA helicase with a fundamental role in initiating hMPV-induced cellular responses. In this study, we have further investigated the mechanism underlying the inhibitory role of hMPV G protein on RIG-I-dependent signaling. We found that the interaction of hMPV G with RIG-I occurs primarily through the CARD domains of RIG-I N-terminus, preventing RIG-I association with the adaptor protein MAVS (mitochondrial antiviral signaling protein), recruitment of RIG-I to mitochondria, as well as the interaction between mitochondria and mitochondria-associated membrane (MAM) component of the endoplasmic reticulum (ER), which contains STINGS, an important part of the viral-induced RIG-I/MAVS signaling pathway, leading in the end to the inhibition of cytokine, chemokine and type I IFN expression. Mutagenesis analysis showed that hMPV G protein cytoplasmic domain played a major role in the observed inhibitory activity, and recombinant viruses expressing a G protein with amino acid substitution in position 2 and 3 recapitulated most of the phenotype observed with rhMPV-ΔG mutant upon infection of airway epithelial cells.  相似文献   

16.
Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarray-based functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NF)κB, activator protein (AP)-1, and interferon regulatory factor (IRF)-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i.), resulting in the activation of many antiviral genes, including interferon (IFN)-β, -λs, inflammatory mediators, and many IFN-stimulated genes (ISGs). We also showed, for the first time, that IFN-β and IFN-λs were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.  相似文献   

17.
研究趋化因子基因对HIV-1外膜蛋白基因疫苗诱导免疫应答的影响,以探求防治HIV的新策略.将pVAX1GP120联合RANTES、MIP-1α基因或者pVAX1GP120单独免疫Balb/c小鼠,采用ELISA检测免疫小鼠的特异性抗体和IFN-γ水平,用MTT比色法检测免疫小鼠脾淋巴细胞的增殖,用乳酸脱氢酶(LDH)试验检测小鼠特异性细胞毒性T淋巴细胞(CTL)的应答.与pVAX1GP120免疫组比较,pVAX1GP120联合RANTES、MIP-1d基因免疫组小鼠血清的抗HIV-1gp120抗体滴度升高,有显著性差异(p<0.01);与pVAX1GP120免疫组比较,pVAX1GP120联合RANTES、MIP-1d基因免疫组小鼠血清的IFN-γ升高,有显著性差异(p<0.01);pVAX1GP120联合RANTES、MIP-1α基因免疫组小鼠的脾淋巴细胞增殖实验刺激指数(SI)以及特异性CTL活性均高于pVAX1GP120免疫组,有显著性差异(p<0.01).RANTES、MIP-1α基因联合HIV-1外膜蛋白基因疫苗免疫小鼠,可能增强HIV特异性Th1细胞和CTL反应,RANTES、MIP-1α基因对体液免疫有加强作用.因此,RANTES、MIP- 1α基因对于HIV-1外膜蛋白基因疫苗具有较好应用前景的免疫佐剂.  相似文献   

18.
研究趋化因子基因对HIV-1外膜蛋白基因疫苗诱导免疫应答的影响,以探求防治HIV的新策略。将 pVAX1GP120联合RANTES、MIP-1α基因或者pVAX1GP120单独免疫Balb/c小鼠,采用ELISA检测免疫小鼠 的特异性抗体和IFN-γ水平,用MTT比色法检测免疫小鼠脾淋巴细胞的增殖,用乳酸脱氢酶(LDH)试验检测小 鼠特异性细胞毒性T淋巴细胞(CTL)的应答。与pVAX1GP120免疫组比较,pVAX1GP120联合RANTES、MIP- 1α基因免疫组小鼠血清的抗HIV-1gp120抗体滴度升高,有显著性差异(p<0.01);与pVAX1GP120免疫组比较, pVAX1GP120联合RANTES、MIP-1α基因免疫组小鼠血清的IFN-γ升高,有显著性差异(p<0.01); pVAX1GP120联合RANTES、MIP-1α基因免疫组小鼠的脾淋巴细胞增殖实验刺激指数(SI)以及特异性CTL活性 均高于pVAX1GP120免疫组,有显著性差异(p<0.01)。RANTES、MIP-1α基因联合HIV-1外膜蛋白基因疫苗免 疫小鼠,可能增强HIV特异性Th1细胞和CTL反应,RANTES、MIP-1α基因对体液免疫有加强作用。因此, RANTES、MIP-1α基因对于HIV-1外膜蛋白基因疫苗具有较好应用前景的免疫佐剂。  相似文献   

19.

Background

Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells against B. pseudomallei.

Methodology and Principal Findings

Using a murine lung epithelial cell line, primary lung epithelial cells and an inhalational murine infection model, we characterized the types of innate immunity proteins and peptides produced upon B. pseudomallei infection. Among a wide panel of immune components studied, increased levels of major pro-inflammatory cytokines IL-6 and TNFα, chemokine MCP-1, and up-regulation of secretory leukocyte protease inhibitor (SLPI) and chemokine (C-C motif) ligand 20 (CCL20) were observed. Inhibition assays using specific inhibitors suggested that NF-κB and p38 MAPK pathways were responsible for these B. pseudomallei-induced antimicrobial peptides.

Conclusions

Our findings indicate that the respiratory epithelial cells, which form the majority of the cells lining the epithelial tract and the lung, have important roles in the innate immune response against B. pseudomallei infection.  相似文献   

20.
Vitamin D has been linked to reduced risk of viral respiratory illness. We hypothesized that vitamin D could directly reduce rhinovirus (RV) replication in airway epithelium. Primary human bronchial epithelial cells (hBEC) were treated with vitamin D, and RV replication and gene expression were evaluated by quantitative PCR. Cytokine/chemokine secretion was measured by ELISA, and transepithelial resistance (TER) was determined using a voltohmmeter. Morphology was examined using immunohistochemistry. Vitamin D supplementation had no significant effects on RV replication, but potentiated secretion of CXCL8 and CXCL10 from infected or uninfected cells. Treatment with vitamin D in the form of 1,25(OH)2D caused significant changes in cell morphology, including thickening of the cell layers (median of 46.5 µm [35.0–69.0] vs. 30 µm [24.5–34.2], p<0.01) and proliferation of cytokeratin-5-expressing cells, as demonstrated by immunohistochemical analysis. Similar effects were seen for 25(OH)D. In addition to altering morphology, higher concentrations of vitamin D significantly upregulated small proline-rich protein (SPRR1β) expression (6.3 fold-induction, p<0.01), suggestive of squamous metaplasia. Vitamin D treatment of hBECs did not alter repair of mechanically induced wounds. Collectively, these findings indicate that vitamin D does not directly affect RV replication in airway epithelial cells, but can influence chemokine synthesis and alters the growth and differentiation of airway epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号