首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.betagal.DeltaF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.betagal.DeltaF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types.  相似文献   

2.
Adenovirus (Ad) vectors are one of the most commonly used viral vectors in gene therapy clinical trials. However, they elicit a robust innate immune response and inflammatory responses. Improvement of the therapeutic index of Ad vector gene therapy requires elucidation of the mechanism of Ad vector-induced inflammation and cytokine/chemokine production as well as development of the safer vector. In the present study, we found that the fiber-modified Ad vector containing poly-lysine peptides in the fiber knob showed much lower serum IL-6 and aspartate aminotransferase levels (as a maker of liver toxicity) than the conventional Ad vector after i.v. administration, although the modified Ad vector showed higher transgene production in the liver than the conventional Ad vector. RT-PCR analysis showed that spleen, not liver, is the major site of cytokine, chemokine, and IFN expression. Splenic CD11c(+) cells were found to secret cytokines. The tissue distribution of Ad vector DNA showed that spleen distribution was much reduced in this modified Ad vector, reflecting reduced IL-6 levels in serum. Liver toxicity by the conventional Ad vector was reduced by anti-IL-6R Ab, suggesting that IL-6 signaling is involved in liver toxicity and that decreased liver toxicity of the modified Ad vector was due in part to the reduced IL-6 production. This study contributes to an understanding of the biological mechanism in innate immune host responses and liver toxicity toward systemically administered Ad vectors and will help in designing safer gene therapy methods that can reduce robust innate immunity and inflammatory responses.  相似文献   

3.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

4.
腺病毒载体是目前重要的基因转移载体之一。腺病毒可作为真核基因表达载体,可制成灭活、重组或抗癌疫苗用于预防呼吸道疾病、癌症和肝炎等传染病。在癌症的基因治疗方面,Ad 载体可运载肿瘤抑制基因,自身基因编码蛋白能诱导细胞调亡,可作为前药物感染细胞,还能利用Ad 的一些特殊复制子,达到治疗肿瘤的目的  相似文献   

5.
Adenovirus (Ad)-based vectors have great potential for use in the gene therapy of multiple diseases, both genetic and nongenetic. While capable of transducing both dividing and quiescent cells efficiently, Ad vectors have been limited by a number of problems. Most Ad vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication-defective vector can be propagated only in human 293 cells that supply the deleted E1 gene functions in trans. Unfortunately, the use of high titers of E1-deleted vectors has been repeatedly demonstrated to result in low-level expression of viral genes still resident in the vector. In addition, the generation of replication-competent Ad (RCA) by recombination events with the E1 sequences residing in 293 cells further limits the usefulness of E1-deleted Ad vectors. We addressed these problems by isolating new Ad vectors deleted for the E1, E3, and the E2b gene functions. The new vectors can be readily grown to high titers and have several improvements, including an increased carrying capacity and a theoretically decreased risk for generating RCA. We have also demonstrated that the further block to Ad vector replication afforded by the deletion of both the E1 and E2b genes significantly diminished Ad late gene expression in comparison to a conventional E1-deleted vector, without destabilization of the modified vector genome. The results suggested that these modified vectors may be very useful both for in vitro and in vivo gene therapy applications.  相似文献   

6.
腺病毒载体是最早用于基因治疗研究的病毒载体之一,也是目前肿瘤基因治疗中最为常见的病毒载体之一,其主要通过靶细胞表面的天然柯萨奇腺病毒受体(coxsackie and adenovirus receptor,CAR)感染宿主细胞。由于大多数肿瘤细胞表面该受体表达水平较低,降低了腺病毒载体对靶细胞的感染效率,从而制约了腺病毒载体在肿瘤基因治疗中的应用。因此,如何提高腺病毒载体对靶细胞的感染效率是腺病毒载体应用于肿瘤基因治疗的关键。目前对腺病毒载体衣壳蛋白质(capsid protein)的遗传修饰是提高其对宿主细胞感染效率的主要途径。本文将对这一领域的主要研究进展作一综述,为该方面的研究提供有用的信息。  相似文献   

7.
Kang E  Yun CO 《BMB reports》2010,43(12):781-788
An often overlooked issue in the field of adenovirus (Ad)-mediated cancer gene therapy is its limited capacity for effective systemic delivery. Although primary tumors can be treated effectively with intralesional injection of conventional Ad vectors, systemic metastasis is difficult to cure. Systemic administration of conventional naked Ads leads to acute accumulation of Ad particles in the liver, induction of neutralizing antibody, short blood circulation half-life, non-specific biodistribution in undesired organs, and low selective accumulation in the target disease site. Versatile strategies involving the modification of viral surfaces with polymers and nanomaterials have been designed for the purpose of maximizing Ad anti-tumor activity and specificity by systemic administration. Integration of viral and non-viral nanomaterials will substantially advance both fields, creating new concepts in gene therapeutics. This review focuses on current advances in the development of smart Ad hybrid nanocomplexes based on various design-based strategies for optimal Ad systemic administration.  相似文献   

8.
Adenovirus (Ad) vectors are among the most commonly used viral vectors in gene therapy clinical trials. However, the application of Ad vectors has been limited to local injection in many cases, because the systemic administration of Ad vectors triggers innate immune responses such as inflammatory cytokine production and tissue damage. To overcome this limitation, it will be necessary to develop safer Ad vectors less likely to induce the innate immune response. In the present study, we demonstrated that a suppressor of cytokine signaling-1 (SOCS1)-expressing Ad vector, Ad-SOCS1, reduces the innate immune response induced by Ad vectors. RAW264.7-SOCS1, a macrophage-like cell line that stably expresses SOCS1, was shown to produce lower levels of inflammatory cytokines after the transduction of Ad vectors. The systemic administration of Ad-SOCS1 into mice elicited the reduced production of inflammatory cytokines, as compared with that elicited by control Ad vectors, i.e., luciferase-expressing Ad vector, Ad-L2. Furthermore, the coadministration of Ad-L2 with Ad-SOCS1 attenuated inflammatory cytokine production and liver toxicity as compared with injection with Ad-L2 alone, and this was achieved without the suppression of luciferase production in various organs. The JAK/STAT pathway was involved in Ad vector-mediated cytokine production, which was impaired by the overexpression of SOCS1. These findings indicate that Ad-SOCS1 could be useful for reducing Ad vector-mediated innate immunity.  相似文献   

9.
The adenovirus (Ad) fiber protein largely determines viral tropism through interaction with specific cell surface receptors. This molecule may also be involved in virion assembly or maturation, as some previously characterized fiber mutants were defective for processing of viral structural proteins. We previously described packaging cell lines that express Ad type 5 (Ad5) fiber and can complement the temperature-sensitive Ad fiber mutant H5ts142. We have now used these packaging cells to construct a new adenoviral vector (Ad5.βgal.ΔF) with E1, E3, and L5 (fiber) deleted and analyzed the fiber null phenotype. Ad5.βgal.ΔF growth was completely helper independent, and fiberless particles were produced by a single final round of growth in 293 cells. Cryoelectron microscopic studies and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the structure and composition of these particles was nearly identical to those of first-generation Ad vectors. As expected, fiberless particles had reduced infectivity on epithelial cells, but they retained the ability to infect monocytic cells via an integrin-dependent pathway. These studies provide a novel approach to developing retargeted Ad gene therapy vectors.  相似文献   

10.
11.
12.
Adenovirus (Ad) vectors for gene therapy are made replication defective by deletion of E1 region genes. For isolation, propagation, and large-scale production of such vectors, E1 functions are supplied in trans from a stable cell line. Virtually all Ad vectors used for clinical studies are produced in the 293 cell, a human embryonic kidney cell line expressing E1 functions from an integrated segment of the left end of the Ad type 5 (Ad5) genome. Replication-competent vector variants that have regained E1 sequences have been observed within populations of Ad vectors grown on 293 cells. These replication-competent variants presumably result from recombination between vector and 293 cell Ad5 sequences. We have developed Ad2-based vectors and have characterized at the molecular level examples of replication-competent variants. All such variants analyzed are Ad2-Ad5 chimeras in which the 293 cell Ad5 E1 sequences have become incorporated into the viral genome by legitimate recombination events. A map of Ad5 sequences within the 293 cell genome developed in parallel is consistent with the proposed recombination events. To provide a convenient vector production system that circumvents the generation of replication-competent variants, we have modified the Ad2 vector backbone by deleting or rearranging the protein IX coding region normally present downstream from the E1 region such that the frequency of recombination between vector and 293 cell Ad5 sequences is greatly reduced. Twelve serial passages of an Ad2 vector lacking the protein IX gene were carried out without generating replication-competent variants. In the course of producing and testing more than 30 large-scale preparations of vectors lacking the protein IX gene or having a rearranged protein IX gene, only three examples of replication-competent variants were observed. Use of these genome modifications allows use of conventional 293 cells for production of large-scale preparations of Ad-based vectors lacking replication-competent variants.  相似文献   

13.
Intravenous (i.v.) delivery of recombinant adenovirus serotype 5 (Ad5) vectors for gene therapy is hindered by safety and efficacy problems. We have discovered a new pathway involved in unspecific Ad5 sequestration and degradation. After i.v. administration, Ad5 rapidly binds to circulating platelets, which causes their activation/aggregation and subsequent entrapment in liver sinusoids. Virus-platelet aggregates are taken up by Kupffer cells and degraded. Ad sequestration in organs can be reduced by platelet depletion prior to vector injection. Identification of this new sequestration mechanism and construction of vectors that avoid it could improve levels of target cell transduction at lower vector doses.  相似文献   

14.
Recombinant adenoviruses (Ad) have become the vector system of choice for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to cells expressing marginal levels of the coxsackievirus and adenovirus receptor (CAR). In order to achieve CAR-independent gene transfer by Ad vectors in clinically important contexts, we proposed modification of viral tropism via genetic alterations to the viral fiber protein. We have shown that incorporation of an Arg-Gly-Asp (RGD)-containing peptide in the HI loop of the fiber knob domain results in the ability of the virus to utilize an alternative receptor during the cell entry process. We have also demonstrated that due to its expanded tissue tropism, this novel vector is capable of efficient transduction of primary tumor cells. An increase in gene transfer to ovarian cancer cells of 2 to 3 orders of magnitude was demonstrated by the vector, suggesting that recombinant Ad containing fibers with an incorporated RGD peptide may be of great utility for treatment of neoplasms characterized by deficiency of the primary Ad type 5 receptor.  相似文献   

15.
The utility of adenovirus vectors for gene therapy is limited by the transience of expression that has been observed in various in vivo models. Immunological responses to viral targets can eliminate transduced cells and cause the loss of transgene expression. We previously described the characterization of an E4 modified adenovirus, Ad2E4ORF6, which is replication defective in cotton rats. We reasoned that gene transfer vectors based on Ad2E4ORF6 would have a reduced potential for viral gene expression in vivo which might be beneficial for achieving persistence of transgene expression. E1 replacement vectors expressing the cystic fibrosis transmembrane regulator or beta-galactosidase were constructed as series of vectors that differed with respect to the E4 region. Vectors containing a wild-type E4 region, E4 open reading frame 6, or a complete E4 deletion were compared in the lungs of BALB/c mice for persistence of expression. Results obtained with nude mice indicate that nonimmunological factors have a major influence on the longevity of transgene expression. Expression was transient from the E1a promoter with all vectors but persisted from the cytomegalovirus promoter only with a vector containing a wild-type E4 region. Transience of expression did not correlate with the disappearance of vector DNA, suggesting that promoter down-regulation may be involved. Coinfection studies indicate an E4 product(s) could be supplied in trans to allow persistent expression from the cytomegalovirus promoter. In summary, the choice of promoter is important for achieving persistence of expression; in addition, some promoters are highly influenced by the context of the vector backbone.  相似文献   

16.
17.
We previously reported that the HS-4 insulator, derived from the chicken beta-globin locus, was able to shield a downstream inducible promoter from viral enhancers or silencers present in the genome of adenovirus vectors. In this study, we constructed two recombinant adenoviruses (Ad) that express an alkaline phosphatase (AP) reporter gene driven by an alpha-fetoprotein (AFP) enhancer/promoter with and without HS-4 insulator (Ad.HS4.AFP-AP and Ad.AFP-AP). The insulated vector, Ad.HS4.AFP-AP, conferred significantly higher AP expression than Ad.AFP-AP in all AFP-producing hepatocellular carcinoma cell lines (HepG2, Hep3B, and HuH7) examined. AP expression from Ad.HS4.AFP-AP was specific to hepatoma cells and barely detectable in AFP-negative tumor cell lines and normal human cells, including human hepatocytes. Intravenous infusion of viral vectors into mice with liver metastasis derived from Hep3B hepatoma cells resulted in AP expression exclusively localized to tumor cells. The number of tumor cells with detectable AP expression was significantly higher in mice infused with Ad.HS4.AFP-AP than in mice that received the non-insulated vector. This study demonstrates that the HS-4 insulator in the context of an Ad vector can increase the activity of the AFP promoter, while maintaining its tumor-specificity in vitro and in vivo. Considering that the anti-tumor activity of oncolytic vectors often depends on the level of pro-apoptotic or suicide gene expression, insulators might be a useful tool to improve the efficacy and specificity of these vectors.  相似文献   

18.
Mizuguchi H  Hayakawa T 《Gene》2002,285(1-2):69-77
Adenovirus (Ad) fiber proteins are responsible for the initial attachment of the virion to the cell membrane. Most Ad vectors currently in use are based on the Ad type 5 (Ad5), which belong to subgroup C, and use the coxsackievirus and adenovirus receptors (CAR) as the initial receptor. Ad35, which belongs to subgroup B, recognizes unknown receptor(s) other than CAR. In this study, the feasibility of the Ad vector containing Ad5/35 chimeric fiber protein was examined in a wide variety of cell types, such as CAR-positive or -negative human tumor cells, rodent cells, and blood cells (a total of 20 cell types), and in mice in vivo. Transduction data suggested that the Ad vectors containing the Ad5/35 chimeric fiber protein exhibited altered and expanded tropism when compared with the Ad5-based vector. The chimeric vector also allows the packaging of larger foreign DNAs than the conventional Ad5-based vector, which can package approximately 8.1-8.2 kb of foreign DNA. The chimeric vector containing approximately 8.8 kb of foreign DNA was generated without affecting the viral growth rate and titer. These results suggested that inclusion of the Ad35 fiber protein into the Ad5-based vector could lead to an improved efficiency in gene therapy and in gene transfer experiments, especially for the cells lacking in sufficient CAR expression.  相似文献   

19.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号