首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic proteins (BMPs) regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3) which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophila aristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp), Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.  相似文献   

2.
3.
Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.  相似文献   

4.
5.
酪蛋白激酶2相互作用蛋白1(caseinkinase2interactionprotein1,CKIP-1)是近年来发现的一种重要分子,它通过与其他分子的相互作用在许多细胞行为中都发挥着重要的作用。最新研究发现,CKIP-1还具有促进细胞凋亡的作用。  相似文献   

6.
7.
8.
Tooth morphogenesis is initiated by reciprocal interactions between the ectoderm and neural crest-derived mesenchyme, and the Wnt signaling pathway is involved in this process. We found that Plakophilin (PKP)1, which is associated with diseases such as ectodermal dysplasia/skin fragility syndrome, was highly expressed in teeth and skin, and was upregulated during tooth development. We hypothesized that PKP1 regulates Wnt signaling via its armadillo repeat domain in a manner similar to β-catenin. To determine its role in tooth development, we performed Pkp1 knockdown experiments using ex vivo organ cultures and cell cultures. Loss of Pkp1 reduced the size of tooth germs and inhibited dental epithelial cell proliferation, which was stimulated by Wnt3a. Furthermore, transfected PKP1-emerald green fluorescent protein was translocated from the plasma membrane to the nucleus upon stimulation with Wnt3a and LiCl, which required the PKP1 N terminus (amino acids 161 to 270). Localization of PKP1, which is known as an adhesion-related desmosome component, shifted to the plasma membrane during ameloblast differentiation. In addition, Pkp1 knockdown disrupted the localization of Zona occludens 1 in tight junctions and inhibited ameloblast differentiation; the two proteins were shown to directly interact by immunoprecipitation. These results implicate the participation of PKP1 in early tooth morphogenesis as an effector of canonical Wnt signaling that controls ameloblast differentiation via regulation of the cell adhesion complex.  相似文献   

9.
Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA). Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+) breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.  相似文献   

10.
11.
Myostatin, a member of the TGF-β superfamily, has been shown to act as a negative regulator of myogenesis. Although its role in myogenesis has been clearly documented through genetic analysis, few gene cascades that respond to myostatin signaling and regulate myogenesis have been characterized, especially in avian species. In a previous study, we screened for such genes in chicken fetal myoblasts (CFMs) using the differential display PCR method and found that cardiac ankyrin repeat protein (CARP) was downregulated by myostatin and specifically expressed in chicken skeletal muscle. However, little is known about the potential functions of CARP in chicken skeletal myogenesis. In this study, the expression patterns of chicken CARP and the possible function of this gene in skeletal muscle growth were characterized. Our data showed that CARP was predominantly expressed in postnatal skeletal muscle, and its expression increased during myogenic differentiation in CFM cells. When CARP was overexpressed, CFM cell growth was enhanced by accelerating the cell cycle at the G1 to S phase transition and increasing cyclin D1 expression. CARP knockdown had the opposite effect: while myoblasts underwent differentiation, knockdown of CARP expression induced extensive cell death, suppressed the formation of myotubes, and markedly decreased the expression of differentiation-related genes such as myosin heavy chain (MHC), myoD, and caveolin-3. Our findings indicate that CARP may play a key role in the myostatin signaling cascade that governs chicken skeletal myogenesis through promoting proliferation and avoiding apoptosis during CFM cell differentiation.  相似文献   

12.
Six transmembrane protein of prostate (Stamp) proteins play an important role in prostate cancer cell growth. Recently, we found that Stamp2 has a critical role in the integration of inflammatory and metabolic signals in adipose tissue where it is highly expressed and regulated by nutritional and metabolic cues. In this study, we show that all Stamp family members are differentially regulated during adipogenesis: whereas Stamp1 expression is significantly decreased upon differentiation, Stamp2 expression is increased. In contrast, Stamp3 expression is modestly changed in adipocytes compared to preadipocytes, and has a biphasic expression pattern during the course of differentiation. Suppression of Stamp1 or Stamp2 expression both led to inhibition of 3T3-L1 differentiation in concert with diminished expression of the key regulators of adipogenesis - CCAAT/enhancer binding protein alpha (C/ebpα) and peroxisome proliferator-activated receptor gamma (Pparγ). Upon Stamp1 knockdown, mitotic clonal expansion was also inhibited. In contrast, Stamp2 knockdown did not affect mitotic clonal expansion, but resulted in a marked decrease in superoxide production that is known to affect adipogenesis. These results suggest that Stamp1 and Stamp2 play critical roles in adipogenesis, but through different mechanisms.  相似文献   

13.
《Autophagy》2013,9(6):561-568
Autophagy, a cellular degradation system, promotes both cell death and survival. The interaction between Bcl-2 family proteins and Beclin 1, a Bcl-2 interacting protein that promotes autophagy, can mediate crosstalk between autophagy and apoptosis. We investigated the interaction between anti-and pro-apoptotic Bcl-2 proteins with Beclin 1. Our results show that Beclin 1 directly interacts with Bcl-2, Bcl-xL, Bcl-w and to a lesser extent with Mcl-1. Beclin 1 does not bind the pro-apoptotic Bcl-2 proteins. The interaction between Beclin 1 and the anti-apoptotic protein Bcl-xL was inhibited by BH3-only proteins, but not by multi-domain proteins. Sequence alignment and structural modeling suggest that Beclin 1 contains a putative BH3-like domain which may interact with the hydrophobic grove of Bcl-xL. Mutation of the Beclin 1 amino acids predicted to mediate this interaction inhibited the association of Beclin 1 with Bcl-xL. Our results suggest that BH3 only proapoptotic Bcl-2 proteins may modulate the interactions between Bcl-xL and Beclin 1.  相似文献   

14.
15.
The cystic fibrosis transmembrane conductance regulator (CFTR) attenuates sphingosine-1-phosphate (S1P) signaling in resistance arteries and has emerged as a prominent regulator of myogenic vasoconstriction. This investigation demonstrates that S1P inhibits CFTR activity via adenosine monophosphate-activated kinase (AMPK), establishing a potential feedback link. In Baby Hamster Kidney (BHK) cells expressing wild-type human CFTR, S1P (1μmol/L) attenuates forskolin-stimulated, CFTR-dependent iodide efflux. S1P’s inhibitory effect is rapid (within 30 seconds), transient and correlates with CFTR serine residue 737 (S737) phosphorylation. Both S1P receptor antagonism (4μmol/L VPC 23019) and AMPK inhibition (80μmol/L Compound C or AMPK siRNA) attenuate S1P-stimluated (i) AMPK phosphorylation, (ii) CFTR S737 phosphorylation and (iii) CFTR activity inhibition. In BHK cells expressing the ΔF508 CFTR mutant (CFTRΔF508), the most common mutation causing cystic fibrosis, both S1P receptor antagonism and AMPK inhibition enhance CFTR activity, without instigating discernable correction. In summary, we demonstrate that S1P/AMPK signaling transiently attenuates CFTR activity. Since our previous work positions CFTR as a negative S1P signaling regulator, this signaling link may positively reinforce S1P signals. This discovery has clinical ramifications for the treatment of disease states associated with enhanced S1P signaling and/or deficient CFTR activity (e.g. cystic fibrosis, heart failure). S1P receptor/AMPK inhibition could synergistically enhance the efficacy of therapeutic strategies aiming to correct aberrant CFTR trafficking.  相似文献   

16.
17.
Phosphatidylinositol 3-kinase (PI3K) has been shown to be an important mediator of intracellular signal transduction in mammalian cells. We show here, for the first time, that the blockade of PI3K activity in human fetal undifferentiated cells induced morphological and functional endocrine differentiation. This was associated with an increase in mRNA levels of insulin, glucagon, and somatostatin, as well as an increase in the insulin protein content and secretion in response to secretagogues. Blockade of PI3K also increased the proportion of pluripotent precursor cells coexpressing multiple hormones and the total number of terminally differentiated cells originating from these precursor cells. We examined whether any of the recently described modulators of endocrine differentiation could participate in regulating PI3K activity in fetal islet cells. The activity of PI3K was inversely correlated with the hepatocyte growth factor/scatter factor–induced downregulation or nicotinamideinduced upregulation of islet-specific gene expression, giving support to the role of PI3K, as a negative regulator of endocrine differentiation. In conclusion, our results provide a mechanism for the regulation of hormone-specific gene expression during human fetal neogenesis. They also suggest a novel function for PI3K, as a negative regulator of cellular differentiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号