首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil.  相似文献   

2.
3.
Halomonas species are recognized for producing exopolysaccharides (EPS) exhibiting amphiphilic properties that allow these macromolecules to interface with hydrophobic substrates, such as hydrocarbons. There remains a paucity of knowledge, however, on the potential of Halomonas EPS to influence the biodegradation of hydrocarbons. In this study, the well-characterized amphiphilic EPS produced by Halomonas species strain TG39 was shown to effectively increase the solubilization of aromatic hydrocarbons and enhance their biodegradation by an indigenous microbial community from oil-contaminated surface waters collected during the active phase of the Deepwater Horizon oil spill. Three Halomonas strains were isolated from the Deepwater Horizon site, all of which produced EPS with excellent emulsifying qualities and shared high (97-100%) 16S rRNA sequence identity with strain TG39 and other EPS-producing Halomonas strains. Analysis of pyrosequence data from surface water samples collected during the spill revealed several distinct Halomonas phylotypes, of which some shared a high sequence identity (≥97%) to strain TG39 and the Gulf spill isolates. Other bacterial groups comprising members with well-characterized EPS-producing qualities, such as Alteromonas , Colwellia and Pseudoalteromonas , were also found enriched in surface waters, suggesting that the total pool of EPS in the Gulf during the spill may have been supplemented by these organisms. Roller bottle incubations with one of the Halomonas isolates from the Deepwater Horizon spill site demonstrated its ability to effectively produce oil aggregates and emulsify the oil. The enrichment of EPS-producing bacteria during the spill coupled with their capacity to produce amphiphilic EPS is likely to have contributed to the ultimate removal of the oil and to the formation of oil aggregates, which were a dominant feature observed in contaminated surface waters.  相似文献   

4.
The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in the United State history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared with outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep sea. Various other microbial functional genes that are relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could have a significant role in biodegradation of oil spills in deep-sea environments.  相似文献   

5.
The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability.  相似文献   

6.
7.
Polycyclic aromatic hydrocarbons (PAHs) are an important class of chemical pollutants that constitute a major component of total hydrocarbons in crude oils. Based on their poor water solubility, toxicity, persistence and potential to bioaccumulate, these compounds are recognized as high-priority pollutants in the environment and are of significant concern for human health. At oil-contaminated sites, PAH-degrading bacteria perform a critical role in the degradation and ultimate removal of these compounds. In April 2010, enormous quantities of PAHs entered the Gulf of Mexico from the thousands of tons of oil that were released from the ill-fated drilling rig Deepwater Horizon. In the ensuing months after the spill, intense research efforts were devoted to characterizing the microorganisms responsible for degrading the oil, particularly in deep waters where a large oil plume, enriched with aliphatic and low molecular-weight aromatic hydrocarbons, was found in the range of 1,000–1,300 m. PAHs, however, were found mainly confined to surface waters. This paper discusses efforts utilizing DNA-based stable isotope probing, cultivation-based techniques and metagenomics to characterize the bacterial guild associated with PAH degradation in oil-contaminated surface waters at Deepwater Horizon.  相似文献   

8.
The enrichment of hydrocarbon-degrading bacteria and the persistence of petroleum hydrocarbons on an estuarine beach after a spill of residual fuel oil on 11 April 1973 in Upper Narragansett Bay, R.I. was investigated. A rapid enrichment occurred during days 4 to 16 after the oil spill and a significant population of hydrocarbon-degrading bacteria was maintained in the beach sand for at least a year. The concentration of petroleum hydrocarbons in the mid-tide area declined rapidly during the bacterial enrichment period, remained fairly constant throughout the summer, and then declined to a low concentration after 1 year. An increased concentration of branched and cyclic aliphatic hydrocarbons in the low-tide sediment 128 days after the spill suggested a migration of hydrocarbons during the summer. Hydrocarbon biodegradation was apparent during the winter months at a rate of less than 1 mug of hydrocarbon per g of dry sediment per day.  相似文献   

9.
Following the EXXOn Valdez oil spill, a radiorespirometric protocol was developed at the University of Alaska Fairbanks (UAF) to assess the potential for microorganisms in coastal waters and sediments to degrade hydrocarbons. The use of bioremediation to assist in oil spill cleanup operations required microbial bioassays to establish that addition of nitrogen and phosphorus would enhance biodegradation. A technique assessing 1-14C-n-hexadecane mineralization in seawater or nutrient rich sediment suspensions was used for both of these measurements. Hydrocarbon-degradation potentials were determined by measuring mineralization associated with sediment microorganisms in sediment suspended in sterilized seawater and/or marine Bushnell-Haas broth. Production of 14CO2 and CO2 was easily detectable during the first 48 hours with added hexadecane levels ranging from 10 to 500 mg/l of suspension and dependent on the biomass of hydrocarbon degraders, the hydrocarbon-oxidation potential of the biomass and nutrient availability. In addition to assessment of the hydrocarbon-degrading potential of environmental samples, the radiorespirometric procedure, and concomitant measurement of microbial biomass, has utility as an indicator of hydrocarbon contamination of soils, aqueous sediments and water, and can also be used to evaluate the effectiveness of bioremediation treatments.  相似文献   

10.
Large oil spills are dramatic perturbations on marine ecosystems, and seabirds are one of the worst affected organisms in such events. It has been argued that oil spills may have important long-term consequences on marine organisms, but supporting evidence remains scarce. The European shag (Phalacrocorax aristotelis) was strongly impacted at population level by the Prestige oil spill, the biggest spillage in the eastern North Atlantic. In this paper, we report on the long-term consequences on reproduction of this coastal seabird, using temporal and spatial replicated data (before–after–control–impact design). Our study revealed long-term reproductive impairment during at least the first 10 years since the Prestige oil spill. Annual reproductive success did not differ before the impact, but after the impact it was reduced by 45% in oiled colonies compared with unoiled ones. This is a rare documentation of long-term effects after a major oil spill, highlighting the need for long-term monitoring in order to assess the real impact of this type of disturbance on marine organisms.  相似文献   

11.
Microbial communities in oil-contaminated seawater   总被引:14,自引:0,他引:14  
Although diverse bacteria capable of degrading petroleum hydrocarbons have been isolated and characterized, the vast majority of hydrocarbon-degrading bacteria, including anaerobes, could remain undiscovered, as a large fraction of bacteria inhabiting marine environments are uncultivable. Using culture-independent rRNA approaches, changes in the structure of microbial communities have been analyzed in marine environments contaminated by a real oil spill and in micro- or mesocosms that mimic such environments. Alcanivorax and Cycloclasticus of the gamma-Proteobacteria were identified as two key organisms with major roles in the degradation of petroleum hydrocarbons. Alcanivorax is responsible for alkane biodegradation, whereas Cycloclasticus degrades various aromatic hydrocarbons. This information will be useful to develop in situ bioremediation strategies for the clean-up of marine oil spills.  相似文献   

12.
A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C15–C27) and polycyclic aromatic hydrocarbons (C0- to C2- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75–98% for higher molecular-weight alkanes (C28–C40) and to 55–80% for the C3 derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C3-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.  相似文献   

13.
The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration.  相似文献   

14.
15.
Prey bacteria shape the community structure of their predators   总被引:1,自引:0,他引:1  
Although predator–prey interactions among higher organisms have been studied extensively, only few examples are known for microbes other than protists and viruses. Among the bacteria, the most studied obligate predators are the Bdellovibrio and like organisms (BALOs) that prey on many other bacteria. In the macroscopical world, both predator and prey influence the population size of the other''s community, and may have a role in selection. However, selective pressures among prey and predatory bacteria have been rarely investigated. In this study, Bacteriovorax, a predator within the group of BALOs, in environmental waters were fed two prey bacteria, Vibrio vulnificus and Vibrio parahaemolyticus. The two prey species yielded distinct Bacteriovorax populations, evidence that selective pressures shaped the predator community and diversity. The results of laboratory experiments confirmed the differential predation of Bacteriovorax phylotypes on the two bacteria species. Not only did Bacteriovorax Cluster IX exhibit the versatility to be the exclusive efficient predator on Vibrio vulnificus, thereby, behaving as a specialist, but was also able to prey with similar efficiency on Vibrio parahaemolyticus, indicative of a generalist. Therefore, we proposed a designation of versatilist for this predator. This initiative should provide a basis for further efforts to characterize the predatory patterns of bacterial predators. The results of this study have revealed impacts of the prey on Bacteriovorax predation and in structuring the predator community, and advanced understanding of predation behavior in the microbial world.  相似文献   

16.
Pyrosequencing of the bacterial community associated with a cosmopolitan marine diatom during enrichment with crude oil revealed several Arenibacter phylotypes, of which one (OTU-202) had become significantly enriched by the oil. Since members of the genus Arenibacter have not been previously shown to degrade hydrocarbons, we attempted to isolate a representative strain of this genus in order to directly investigate its hydrocarbon-degrading potential. Based on 16S rRNA sequencing, one isolate (designated strain TG409T) exhibited >99% sequence identity to three type strains of this genus. On the basis of phenotypic and genotypic characteristics, strain TG409T represents a novel species in the genus Arenibacter, for which the name Arenibacter algicola sp. nov. is proposed. We reveal for the first time that polycyclic aromatic hydrocarbon (PAH) degradation is a shared phenotype among members of this genus, indicating that it could be used as a taxonomic marker for this genus. Kinetic data for PAH mineralization rates showed that naphthalene was preferred to phenanthrene, and its mineralization was significantly enhanced in the presence of glass wool (a surrogate for diatom cell surfaces). During enrichment on hydrocarbons, strain TG409T emulsified n-tetradecane and crude oil, and cells were found to be preferentially attached to oil droplets, indicating an ability by the strain to express cell surface amphiphilic substances (biosurfactants or bioemulsifiers) as a possible strategy to increase the bioavailability of hydrocarbons. This work adds to our growing knowledge on the diversity of bacterial genera in the ocean contributing to the degradation of oil contaminants and of hydrocarbon-degrading bacteria found living in association with marine eukaryotic phytoplankton.  相似文献   

17.
Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts.  相似文献   

18.
The Deepwater Horizon oil spill impacted Louisiana''s coastal estuaries physically, chemically, and biologically. To better understand the ecological consequences of this oil spill on Louisiana estuaries, we compared the abundance and size of two Gulf shrimp species (Farfantepeneus aztecus and Litopeneus setiferus) in heavily affected and relatively unaffected estuaries, before and after the oil spill. Two datasets were used to conduct this study: data on shrimp abundance and size before the spill were available from Louisiana Department of Wildlife and Fisheries (LDWF). Data on shrimp abundance and size from after the spill were independently collected by the authors and by LDWF. Using a Before-After-Control-Impact with Paired sampling (BACIP) design with monthly samples of two selected basins, we found brown shrimp to become more abundant and the mean size of white shrimp to become smaller. Using a BACIP with data on successive shrimp year-classes of multiple basins, we found both species to become more abundant in basins that were affected by the spill, while mean shrimp size either not change after the spill, or increased in both affected and unaffected basins. We conclude that following the oil spill abundances of both species increased within affected estuaries, whereas mean size may have been unaffected. We propose two factors that may have caused these results: 1) exposure to polycyclic aromatic hydrocarbons (PAHs) may have reduced the growth rate of shrimp, resulting in a delayed movement of shrimp to offshore habitats, and an increase of within-estuary shrimp abundance, and 2) fishing closures established immediately after the spill, may have resulted in decreased fishing effort and an increase in shrimp abundance. This study accentuates the complexities in determining ecological effects of oil spills, and the need of studies on the organismal level to reveal cause-and-effect relationships of such events.  相似文献   

19.
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.  相似文献   

20.
Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13C-enriched C4 grass Spartina alterniflora and 13C-depleted petroleum to monitor changes in the 13C content of biomass. Magnetic bead capture methods for selective recovery of bacterial RNA were used to monitor the 13C content of bacterial biomass during a 2-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass was derived from consumption of the freshly spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of Gamma- and Deltaproteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in situ. Although employed here at the domain level, RNA capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the 13C content of biomarker lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号