首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on polyploidization of megakaryocytes have been hampered by the lack of synchronized polyploid megakaryocytes. In this study, a relatively synchronized polyploid cell model was successfully established by employing Dami cells treated with nocodazole. In nocodazole‐induced cells, cyclin B expression oscillated normally as in diploid cells and polyploid megakaryocytes. By using the nocodazole‐induced Dami cell model, we found that 4E‐BP1 and Thr421/Ser424 of ribosomal S6 kinase 1(S6K1) were phosphorylated mostly at M‐phase in cytoplasm and oscillated in nocodazole‐induced polyploid Dami cells, concomitant with increased expression of p27 and cyclin D3. However, phosphorylation of 4E‐BP1 and S6K1 on Thr421/Ser424 was significantly decreased in differentiated Dami cells induced by phorbol 12‐myristate 13‐acetate (PMA), concomitant with increased expression of cyclin D1 and p21 and cyclin D3. Overexpression of the kinase dead form of S6K1 containing the mutation Lys 100 → Gln in PMA‐induced Dami cells increased ploidy whereas overexpression of rapamycin‐resistant form of S6K1 containing the mutations Thr421 → Glu and Ser424 → Asp significantly dephosphorylated 4E‐BP1 and reduced expression of cyclin D1, cyclin D3, p21 and p27, and slightly decreased the ploidy of PMA‐induced Dami cells, compared with treatment with PMA alone. Moreover, overexpression of rapamycin‐resistant form of S6K1 significantly reversed polyploidization of nocodazole‐induced Dami cells. Furthermore, MAP (a novel compound synthesized recently) partly blocked the phosphorylation of S6K1 on Thr421/Ser424 and decreased the expression of p27 and polyploidization in nocodazole‐induced Dami cells. Taken together, these data suggested that S6K1/4E‐BP1 pathway may play an important role in polyploidization of megakaryocytes. J. Cell. Physiol. 219: 31–44, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
3.
Phosphatidylinositil-3 kinase (PI3K) is a heterodimer of catalytic and regulatory subunits. It is involved in various signaling pathways and key functions of the cells. The present study investigated the role of PI3K in vanadate-induced alteration in cell cycle regulation in C141 mouse epidermal cells. Vanadate caused a time- and dose-dependent increase in PI3K activity and phosphorylation of p70 S6 kinase (p70S6K) at Thr421/Ser424 and Thr389 sites. The phosphorylation at these sites was inhibited by PI3K inhibitor, LY294002, and p70S6K mutation. Vanadate promoted S phase entry and this promotion was inhibited by LY294002 and rapmycin, a p70S6K inhibitor. Vanadate-induced enhancement in S phase entry was also inhibited in transfection with dominant negative p70S6K mutant cells. The results obtained show that vanadate is able to increase PI3K activity through phosphorylation. PI3K activated p70S6K, which phosphated protein S6, and promoted S phase entry.  相似文献   

4.
Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser(9) and, to a lesser extent, Thr(390), the dephosphorylation of p70S6K at Thr(389), and the phosphorylation of p70S6K at Thr(421) and Ser(424). The specific p38 inhibitor SB203080 reduced the p-GSK3β(Ser9) and autophagy through the phosphorylation of p70S6K(Thr389); however, it augmented the levels of p-ERK, p-GSK3β(Thr390), and p-70S6K(Thr421/Ser424) induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK(Ser9)/p70S6K(Thr380) and ERK/GSK3β(Thr390)/p70S6K(Thr421/Ser424) kinase signaling, which is involved in cell survival and cell death.  相似文献   

5.
目的:多倍性是物种形成的重要机制,决定一些重要器官细胞产生的数量和功能,而且与某些病理过程(如恶性肿瘤)的发生有密切关系。我们通过建立相对同步化的多倍体细胞模型,已经证实mTOR/S6K1参与多倍体细胞周期的调控。本课题主要研究roTOR下游的另一个重要信号分子4E-BP1是否也参与细胞的倍体化调控。方法:诺考达唑诱导Dami细胞建立相对同步化的多倍体细胞模型,Western-blot分析多倍体细胞模型中mTOR/4E—BP1通路信号分子表达和磷酸化修饰位点的变化,流式细胞仪双荧光分析4E—BP1不同结构域磷酸化位点修饰与细胞周期各时相的关系。结果:诺考达唑诱导的Dami细胞可作为相对同步化的多倍体细胞周期模型,在二倍体和多倍体细胞周期中,mTOR表达增加及第2448位丝氨酸位点磷酸化发生在G1期进入S期,4E—BP1的第37,46位苏氨酸和第65位丝氨酸位点磷酸化发生在G2/M期。结论:mTOR/4E-BP1通路参与多倍体细胞周期的调控。  相似文献   

6.
Endogenous IGF-I regulates growth of human intestinal smooth muscle cells by jointly activating phosphatidylinositol 3-kinase (PI3K) and ERK1/2. The 70-kDa ribosomal S6 kinase (p70S6 kinase) is a key regulator of cell growth activated by several independently regulated kinases. The present study characterized the role of p70S6 kinase in IGF-I-induced growth of human intestinal smooth muscle cells and identified the mechanisms of p70S6 kinase activation. IGF-I-induced growth elicited via either the PI3K or ERK1/2 pathway required activation of p70S6 kinase. IGF-I elicited concentration-dependent activation of PI3K, 3-phosphoinositide-dependent kinase-1 (PDK-1), and p70S6 kinase that was sequential and followed similar time courses. IGF-I caused time-dependent and concentration-dependent phosphorylation of p70S6 kinase on Thr(421)/Ser(424), Thr(389), and Thr(229) that paralleled p70S6 kinase activation. p70S6 kinase(Thr(421)/Ser(424)) phosphorylation was PI3K dependent and PDK-1 independent, whereas p70S6 kinase(Thr(389)) and p70S6 kinase(Thr(229)) phosphorylation and p70S6 kinase activation were PI3K dependent and PDK-1 dependent. IGF-I elicited sequential Akt(Ser(308)), Akt(Ser(473)), and mammalian target of rapamycin(Ser(2448)) phosphorylation; however, transfection of muscle cells with kinase-inactive Akt1(K179M) showed that these events were not required for IGF-I to activate p70S6 kinase and stimulate proliferation of human intestinal muscle cells.  相似文献   

7.

Purpose

To investigate the effects of hypoxic conditioned media from rat cerebral cortical cells on the proliferation and differentiation of neural stem cells (NSCs) in vitro, and to study the roles of PI3-K/Akt and JNK signal transduction pathways in these processes.

Methods

Cerebral cortical cells from neonatal Sprague–Dawley rat were cultured under hypoxic and normoxic conditions; the supernatant was collected and named ‘hypoxic conditioned medium’ (HCM) and ‘normoxic conditioned medium’ (NCM), respectively. We detected the protein levels (by ELISA) of VEGF and BDNF in the conditioned media and mRNA levels (by RT-PCR) in cerebral cortical cells. The proliferation (number and size of neurospheres) and differentiation (proportion of neurons and astrocytes over total cells) of NSCs was assessed. LY294002 and SP600125, inhibitors of PI3-K/Akt and JNK, respectively, were applied, and the phosphorylation levels of PI3-K, Akt and JNK were measured by western blot.

Results

The protein levels and mRNA expressions of VEGF and BDNF in 4% HCM and 1% HCM were both higher than that of those in NCM. The efficiency and speed of NSCs proliferation was enhanced in 4% HCM compared with 1% HCM. The highest percentage of neurons and lowest percentage of astrocytes was found in 4% HCM. However, the enhancement of NSCs proliferation and differentiation into neurons accelerated by 4% HCM was inhibited by LY294002 and SP600125, with LY294002 having a stronger inhibitory effect. The increased phosphorylation levels of PI3-K, Akt and JNK in 4% HCM were blocked by LY294002 and SP600125.

Conclusions

4%HCM could promote NSCs proliferation and differentiation into high percentage of neurons, these processes may be mainly through PI3-K/Akt pathways.  相似文献   

8.
FPC (fibrocystin or polyductin) is a single transmembrane receptor-like protein, responsible for the human autosomal recessive polycystic kidney disease (ARPKD). It was recently proposed that FPC undergoes a Notch-like cleavage and subsequently the cleaved carboxy(C)-terminal fragment translocates to the nucleus. To study the functions of the isolated C-tail, we expressed the intracellular domain of human FPC (hICD) in renal epithelial cells. By 3-dimensional (3D) tubulogenesis assay, we found that in contrast to tubule-like structures formed from control cells, hICD-expressing cells exclusively formed cyst-like structures. By western blotting, we showed that the Akt/mTOR pathway, indicated by increased phosphorylation of Akt at serine 473 and S6 kinase 1 at threonine 389, was constitutively activated in hICD-expressing cells, similar to that in FPC knockdown cells and ARPKD kidneys. Moreover, application of mTOR inhibitor rapamycin reduced the size of the cyst-like structures formed by hICD-expressing cells. Application of either LY294002 or wortmannin inhibited the activation of both S6K1 and Akt. Expression of full-length FPC inhibited the activation of S6 and S6 kinase whereas co-expression of hICD with full-length FPC antagonized the inhibitory effect of full-length FPC on mTOR. Taken together, we propose that FPC modulates the PI3K/Akt/mTOR pathway and the cleaved C-tail regulates the function of the full-length protein.  相似文献   

9.
10.
Ribosomal S6 kinase 1 (S6K1), as a key regulator of mRNA translation, plays an important role in cell cycle progression through the G(1) phase of proliferating cells and in the synaptic plasticity of terminally differentiated neurons. Activation of S6K1 involves the phosphorylation of its multiple Ser/Thr residues, including the proline-directed sites (Ser-411, Ser-418, Thr-421, and Ser-424) in the autoinhibitory domain near the C terminus. Phosphorylation at Thr-389 is also a crucial event in S6K1 activation. Here, we report that S6K1 phosphorylation at Ser-411 is required for the rapamycin-sensitive phosphorylation of Thr-389 and the subsequent activation of S6K1. Mutation of Ser-411 to Ala ablated insulin-induced Thr-389 phosphorylation and S6K1 activation, whereas mutation mimicking Ser-411 phosphorylation did not show any effect. Furthermore, phosphomimetic mutation of Thr-389 overcame the inhibitory effect of the mutation S411A. Thus, Ser-411 phosphorylation regulates S6K1 activation via the control of Thr-389 phosphorylation. In nervous system neurons, Cdk5-p35 kinase associates with S6K1 via the direct interaction between p35 and S6K1 and catalyzes S6K1 phosphorylation specifically at Ser-411. Inhibition of the Cdk5 activity or suppression of Cdk5 expression blocked S6K1 phosphorylation at Ser-411 and Thr-389, resulting in S6K1 inactivation. Similar results were obtained by treating asynchronous populations of proliferating cells with the CDK inhibitor compound roscovitine. Altogether, our findings suggest a novel mechanism by which the CDK-mediated phosphorylation regulates the activation of S6K1.  相似文献   

11.
We report here for the first time the detection of the ribosomal p70S6 kinase (p70S6K) in a hematopoietic cell, the neutrophil, and the stimulation of its enzymatic activity by granulocyte macrophage colony-stimulating factor (GM-CSF). GM-CSF modified the Vmax of the enzyme (from 7.2 to 20.5 pmol/min/mg) and induced a time- and dose-dependent phosphorylation on p70S6K residues Thr389 and Thr421/Ser424. The immunosuppressant macrolide rapamycin caused either a decrease in intensity of phospho-Thr389 bands in Western blots, or as a downshift in the relative mobility of phospho-Thr421/Ser424 bands (consistent with the loss of phosphate), but not both simultaneously. The immunosuppressant FK506 failed to inhibit p70S6K activation, but was able to rescue the rapamycin-induced downshift, pointing to a role for the mammalian target of rapamycin (mTOR) kinase. Rapamycin also caused an inhibition (IC50 0.2 nm) of the in vitro enzymatic activity of p70S6K. However, the inhibition of activity was not complete, but only a 40-50%, indicating that neutrophil p70S6K activity has a rapamycin-resistant component. This component was totally inhibited by pre-incubating the cells with the mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD-98059 prior to treatment with rapamycin. This indicated that a kinase from the MEK/MAPK pathway also plays a role in p70S6K activation. Thus, GM-CSF causes the dual activation of a rapamycin-resistant, MAPK-related kinase, that targets Thr421/Ser424 S6K phosphorylation, and a rapamycin-sensitive, mTOR-related kinase, that targets Thr389, both of which are needed in cooperation to achieve full activation of neutrophil p70S6K.  相似文献   

12.
Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms by which vanadate mediates adverse effects are not well understood. The present study investigated the vanadate-induced phosphorylation of Akt and p70S6K, two kinases known to be vital for cell survival, growth, transformation, and transition of the cell cycle in mammals. Exposure of mouse epidermal JB6 cells to vanadium led to phosphorylation of Akt and p70S6K in a time- and dose-dependent manner. Vanadium exposure also caused translocation of atypical isoforms of PKC (lambda, zeta) from the cytosol to the membrane, but had no effect on PKCalpha translocation, suggesting that the atypical PKCs (aPKC) were specifically involved in vanadium-induced cellular response. Importantly, overexpression of a dominant negative mutant PKClambda blocked Akt phosphorylation at Ser473 and Thr308, whereas it did not inhibit p70S6k phosphorylation at Thr389 and Thr421/Ser424, suggesting that aPKC activation is specifically involved in vanadium-induced activation of Akt, but not in activation of p70S6k. Furthermore, vanadium-induced p70S6k phosphorylation at Thr389 and Thr421/Ser424 and Akt phosphorylation at Thr308 occurred through a PI-3K-dependent pathway because a PI-3K dominant negative mutant inhibited induction as compared with vector control cells. These results indicate that there was a differential role of aPKC in vanadate-induced phosphorylation of Akt and p70S6k, suggesting that signal transduction pathways leading to the activation of Akt and p70S6k were different.  相似文献   

13.
Cyclooxygenase (COX) enzymes mediate the synthesis of proinflammatory prostaglandin (PG) species from cellular arachidonic acid. COX/PGs have been implicated in skeletal muscle growth/regeneration; however, the mechanisms by which PGs influence skeletal muscle adaptation are poorly understood. The present study aimed to investigate PGF(2α) signaling and its role in skeletal myotube hypertrophy. PGF(2α) or the FP receptor agonist fluprostenol increased C2C12 myotube diameter. This effect was abolished by the FP receptor antagonist AL8810 and mammalian target of rapamycin (mTOR) inhibition. PGF(2α) stimulated time- and dose-dependent increases in the phosphorylation of extracellular receptor kinase (ERK)1/2 (Thr202/Tyr204), p70S6 kinase (p70S6K) (Thr389 and Thr421/Ser424), and eukaryotic initiation factor 4G (eIF4G) (Ser1108) without influencing Akt (Ser473). Pretreatment with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and the ERK inhibitor PD98059 blocked F prostanoid receptor signaling responses, whereas rapamycin blocked heightened p70S6K/eIF4G phosphorylation without influencing ERK1/2 phosphorylation. These data suggest that activation of the F prostanoid receptor is coupled to C2C12 myotube growth and intracellular signaling via a PI3K/ERK/mTOR-dependent pathway.  相似文献   

14.
Ultraviolet light A (UVA) plays an important role in the etiology of human skin cancer, and UVA-induced signal transduction has a critical role in UVA-induced skin carcinogenesis. The upstream signaling pathways leading to p70(S6K) phosphorylation and activation are not well understood. Here, we observed that UVA induces phosphorylation and activation of p70(S6K). Further, UVA-stimulated p70(S6K) activity and phosphorylation at Thr(389) were blocked by wortmannin, rapamycin, PD98059, SB202190, and dominant negative mutants of phosphatidylinositol (PI) 3-kinase p85 subunit (DNM-Deltap85), ERK2 (DNM-ERK2), p38 kinase (DNM-p38), and JNK1 (DNM-JNK1) and were absent in Jnk1-/- or Jnk2-/- knockout cells. The p70(S6K) phosphorylation at Ser(411) and Thr(421)/Ser(424) was inhibited by rapamycin, PD98059, or DNM-ERK2 but not by wortmannin, SB202190, DNM-Deltap85, or DNM-p38. However, Ser(411), but not Thr(421)/Ser(424) phosphorylation, was suppressed in DNM-JNK1 and abrogated in Jnk1-/- or Jnk2-/- cells. In vitro assays indicated that Ser(411) on immunoprecipitated p70(S6K) proteins is phosphorylated by active JNKs and ERKs, but not p38 kinase, and Thr(421)/Ser(424) is phosphorylated by ERK1, but not ERK2, JNKs, or p38 kinase. Moreover, p70(S6K) co-immunoprecipitated with PI 3-kinase and possibly PDK1. The complex possibly possessed a partial basal level of phosphorylation, but not at MAPK sites, which was available for its activation by MAPKs in vitro. Thus, these results suggest that activation of MAPKs, like PI 3-kinase/mTOR, may be involved in UVA-induced phosphorylation and activation of p70(S6K).  相似文献   

15.
Tesseraud S  Bigot K  Taouis M 《FEBS letters》2003,540(1-3):176-180
The regulation of S6K1 by nutritional status and insulin has been recently reported in vivo in chicken muscle despite the relative insulin resistance of this tissue as estimated by phosphatidylinositol 3-kinase (PI3-kinase) activity. The present work aimed to study the impact of amino acids on S6K1 activity in quail muscle (QM7) myoblasts. Firstly, we characterized S6K1 in QM7 cells and demonstrated the absence of insulin receptors in these cells. Secondly, we showed that amino acids in the absence of insulin induced S6K1 phosphorylation on Thr389 and concomitantly increased its enzymatic activity. Amino acid-induced S6K1 activation was inhibited by LY294002 (PI3-kinase inhibitor) and rapamycin (inhibitor of the mammalian target of rapamycin, mTOR), suggesting the involvement of an avian homolog of mTOR. The availability of individual amino acids (methionine or leucine) regulated S6K1 phosphorylation on Thr389 and QM7 protein synthesis. In conclusion, amino acids regulate S6K1 phosphorylation and activity in QM7 cells through the mTOR/PI3-kinase pathway in an insulin-independent manner.  相似文献   

16.

Objective

Tetrameric α2-macroglobulin (α2M), a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α2M (α2M*) binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α2M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells.

Methods

Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies.

Results

Stimulation of cells with α2M* promotes phosphorylation of mTOR, TSC2, S6-Kinase, 4EBP, AktT308, and AktS473 in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α2M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α2M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α2M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of AktS473 phosphorylation and levels of p-AktS473 in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α2M*-induced phosphorylation of AktS473 phosphorylation in Rictor immunoprecipitates.

Conclusion

Binding of α2M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein synthesis in the prostate cancer cells.  相似文献   

17.
Phosphorylation of the highly conserved hydrophobic motif site in AGC kinases is necessary for phosphotransferase activity. Phosphorylation of this motif (FLGFT389Y) in p70 S6 kinase (S6K1) is both rapamycin- and wortmannin-sensitive, suggesting a role for both mammalian target of rapamycin- and phosphatidylinositol 3-kinase-dependent pathways. We report here that co-expression of phosphoinositide-dependent kinase-1 (PDK1) and the phosphatidylinositol 3-kinase-regulated atypical protein kinase Czeta cooperate to increase both phosphorylation of the hydrophobic motif site Thr(389), as well as the activation loop site Thr(229). Interestingly, although PDK1 alone can promote an increase in Thr(389) phosphorylation in both wild type S6K1 and a kinase-inactive mutant of S6K1, the cooperative effect between PDK1 and protein kinase Czeta required S6K1 activity. Furthermore, Akt, another phosphatidylinositol 3-kinase effector and regulator of S6K1, also increased Thr(389) phosphorylation in a S6K1 activity-dependent manner. Consistent with this, epidermal growth factor-induced Thr(389) phosphorylation in wild type S6K1 persisted for up to 120 min, whereas kinase-inactive mutants of S6K1 displayed only a reduced and transient increase in Thr(389) phosphorylation. We conclude that S6K1 activity is required for maximal Thr(389) phosphorylation by mitogens and by multiple phosphatidylinositol 3-kinase-dependent inputs including PDK1, PKCzeta, and Akt, and we propose that autophosphorylation is an important regulatory mechanism for phosphorylation of the hydrophobic motif Thr(389) site in S6K1.  相似文献   

18.
Lipoic acid (LA) is a naturally occurring compound with beneficial effects on obesity. The aim of this study was to evaluate its effects on lipolysis in 3T3-L1 adipocytes and the mechanisms involved. Our results revealed that LA induced a dose- and time-dependent lipolytic action, which was reversed by pretreatment with the c-Jun N-terminal kinase inhibitor SP600125, the PKA inhibitor H89, and the AMP-activated protein kinase activator AICAR. In contrast, the PI3K/Akt inhibitor LY294002 and the PDE3B antagonist cilostamide enhanced LA-induced lipolysis. LA treatment for 1 h did not modify total protein content of hormone-sensitive lipase (HSL) but significantly increased the phosphorylation of HSL at Ser563 and at Ser660, which was reversed by H89. LA treatment also induced a marked increase in PKA-mediated perilipin phosphorylation. LA did not significantly modify the protein levels of adipose triglyceride lipase or its activator comparative gene identification 58 (CGI-58) and inhibitor G(0)/G(1) switch gene 2 (G0S2). Furthermore, LA caused a significant inhibition of adipose-specific phospholipase A2 (AdPLA) protein and mRNA levels in parallel with a decrease in the amount of prostaglandin E2 released and an increase in cAMP content. Together, these data suggest that the lipolytic actions of LA are mainly mediated by phosphorylation of HSL through cAMP-mediated activation of protein kinase A probably through the inhibition of AdPLA and prostaglandin E2.  相似文献   

19.
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is etiologically associated with KS, the most common AIDS-related malignancy. KS is characterized by vast angiogenesis and hyperproliferative spindle cells. We have previously reported that HIV-1 Tat can trigger KSHV reactivation and accelerate Kaposin A-induced tumorigenesis. Here, we explored Tat promotion of KSHV vIL-6-induced angiogenesis and tumorigenesis. Tat promotes vIL-6-induced cell proliferation, cellular transformation, vascular tube formation and VEGF production in culture. Tat enhances vIL-6-induced angiogenesis and tumorigenesis of fibroblasts and human endothelial cells in a chicken chorioallantoic membrane (CAM) model. In an allograft model, Tat promotes vIL-6-induced tumorigenesis and expression of CD31, CD34, SMA, VEGF, b-FGF, and cyclin D1. Mechanistic studies indicated Tat activates PI3K and AKT, and inactivates PTEN and GSK-3β in vIL-6 expressing cells. LY294002, a specific inhibitor of PI3K, effectively impaired Tat’s promotion of vIL-6-induced tumorigenesis. Together, these results provide the first evidence that Tat might contribute to KS pathogenesis by synergizing with vIL-6, and identify PI3K/AKT pathway as a potential therapeutic target in AIDS-related KS patients.  相似文献   

20.
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号