首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adequate nutrition is a fundamental requirement for the maintenance and growth of populations, but complex interactions between nutrients and plant toxins make it difficult to link variation in plant quality to the ecology of wild herbivores. We asked whether a ‘foodscape’ model of habitat that uses near-infrared spectroscopy to describe the palatability of individual trees in the landscape, predicted the foraging decisions of a mammalian browser, the koala (Phascolarctos cinereus). Specifically, we considered four behavioural decision points at which nutritional quality may influence an animal’s decision. These were: which tree to enter, whether to feed from that tree, when to stop eating, and how long to remain in that tree. There were trends for koalas to feed in eucalypt trees that were more palatable than unvisited neighbouring conspecific trees, and than trees that they visited but did not eat. Koalas ate longer meals in more palatable trees, and stayed longer and spent more time feeding per visit to these trees. Using more traditional chemical analyses, we identified that an interaction between the concentrations of formylated phloroglucinol compounds (a group of plant secondary metabolites) and available N (an integrated measure of tannins, digestibility and N) influenced feeding. The study shows that foodscape models that combine spatial information with integrated measures of food quality are a powerful tool to predict the feeding behaviour of herbivores in a landscape.  相似文献   

2.
The koala is the quintessential specialist herbivore, feeding almost exclusively on Eucalyptus foliage. Consequently, the limitations imposed on the koala's diet by plant defences indicate the extent to which evolutionary adaptations allow mammalian herbivores to circumvent such defences. We tested whether a recently discovered group of plant secondary metabolites, the formylated phloroglucinol compounds (FPCs), deters koalas from feeding on some eucalypt foliage. We found that captive koalas ate less foliage in a single night from trees with high FPC concentrations. Individual trees also differ in the types of FPC they possess, but for a given eucalypt species, most FPCs were similarly effective deterrents. Two closely related and sympatric eucalypt species could be clearly separated by the amounts that koalas ate from each; however, this difference could not be explained by total FPC concentrations alone. We suggest, that in this case, the presence of a distinct type of FPC deters koala herbivory on the less palatable species, and may have facilitated the evolutionary divergence of these species. We conclude that plant defences probably play an important role in determining the distribution and abundance of koalas.  相似文献   

3.
Conserving habitats crucial for threatened koala (Phascolarctos cinereus) populations requires rating habitat quality from a fine spatial scale to patches, landscapes and then regions. The koala has a specialized diet focused on the leaves of a suite of Eucalyptus species. We asked: what are the key regional influences on habitat selection by koalas in the far north coast of New South Wales? We addressed this question by investigating the multi-scale factors, and within-scale and cross-scale interactions, that influence koala habitat selection and distribution across four local government areas on the far north coast of New South Wales. We assembled and analysed a large data set of tree selection, identified by the presence of scats, in a wide range of randomly selected 5 × 5 km grids across the region. This resulted in more than 9000 trees surveyed for evidence of koala use from 302 field sites, together with associated biophysical site features. The dominant factor influencing habitat use and koala occurrence was the distribution of five Eucalyptus species. Koalas were more likely to use medium-sized trees of these species where they occurred on soils with high levels of Colwell phosphorous. We also identified new interactions among the distribution of preferred tree species and soil phosphorous, and their distribution with the amount of suitable habitat in the surrounding landscape. Our study confirmed that non-preferred species of eucalypts and non-eucalypts are extensively used by koalas and form important components of koala habitat. This finding lends support to restoring a mosaic of koala-preferred tree species and other species recognized for their value as shelter. Our study has provided the ecological foundation for developing a novel regional-scale approach to the conservation of koalas, with adaptability to other wildlife species.  相似文献   

4.
The role of neuropeptides in caterpillar nutritional ecology   总被引:5,自引:0,他引:5  
Bede JC  McNeil JN  Tobe SS 《Peptides》2007,28(1):185-196
Plant diet strongly impacts the fitness of insect herbivores. Immediately, we think of plant defensive compounds that may act as feeding deterrents or toxins. We are, probably, less aware that plants also influence insect growth and fecundity through their nutritional quality. However, most herbivores respond to their environment and select the diet which optimizes their growth and development. This regulation of nutritional balance may occur on many levels: through selecting and ingesting appropriate plant tissue and nutrient digestion, absorption and utilization. Here, we review evidence of how nutritional requirements, particularly leaf protein to digestible carbohydrate ratios, affect caterpillar herbivores. We propose a model where midgut endocrine cells assess and integrate hemolymph nutritional status and gut content and release peptides which influence digestive processes. Understanding the effects of diet on the insect herbivore is essential for the rational design and implementation of sustainable pest management practices.  相似文献   

5.
I address the selection of plants with different characteristics by herbivores of different body sizes by incorporating allometric relationships for herbivore foraging into optimal foraging models developed for herbivores. Herbivores may use two criteria in maximizing their nutritional intake when confronted with a range of food resources: a minimum digestibility and a minimum cropping rate. Minimum digestibility should depend on plant chemical characteristics and minimum cropping rate should depend on the density of plant items and their size (mass). If herbivores do select for these plant characteristics, then herbivores of different body sizes should select different ranges of these characteristics due to allometric relationships in digestive physiology, cropping ability and nutritional demands. This selectivity follows a regular pattern such that a herbivore of each body size can exclusively utilize some plants, while it must share other plants with herbivores of other body sizes. I empirically test this hypothesis of herbivore diet selectivity and the pattern of resource use that it produces in the field and experimentally. The findings have important implications for competition among herbivores and their population and community ecology. Furthermore, the results may have general applicability to other types of foragers, with general implications for how biodiversity is influenced.  相似文献   

6.
1. Considerable research has been conducted on koala Phascolarctos cinereus population dynamics and the epidemiology of Chlamydia psittaci infection in koalas, but the impact of Chlamydia on koala populations has been difficult to assess.
2. I developed a model of koala and Chlamydia population dynamics to examine interactions between Chlamydia transmission and pathogenicity, koala mating behaviour and demography, and koala population persistence.
3. Simulations based on sexual and parent–offspring parasite transmission demonstrate that stable Chlamydia–koala coexistence is possible in a small population for a broad range of demographic, behavioural, pathogenicity and transmission parameter estimations. Koala population persistence was most sensitive to reduced annual survivorship of adults (4–10-year-old males and 2–12-year-old females), highlighting the need for accurate field estimates of adult survivorship in order to assess Chlamydia 's impact on specific populations.
4. If koalas become less resistant to disease in fragmented, high-stress habitats (i.e. experience increased Chlamydia -induced mortality and sterility rates), Chlamydia is not predicted to cause koala extinctions under most conditions. Extinctions are only predicted if Chlamydia transmission rates also increase (e.g. due to new transmission pathways or increased mating frequency), or other non-disease factors change birth and mortality rates to reduce the koala population's intrinsic rate of increase below 0·1.
5. The most important predicted effect of habitat fragmentation and other forms of human disturbance on this unique host–parasite relationship is the extinction of Chlamydia in populations where koala resistance to disease decreases.  相似文献   

7.
Predicting interactions between drought and plant–insect interactions has been a challenge. Currently, we are unable to accurately predict herbivore abundance on stressed plants despite over 500 publications and half a dozen formal hypotheses. With drought predicted to increase in severity with climate change, determining herbivore abundance on stressed plants is critical for continued agricultural and natural system management. During drought, plants increase concentrations of nutrients and also suffer from water loss. Many empirical studies test drought on plants using severe continuous stress, but studies suggest drought may benefit herbivores when it is intermittent (pulsed). In our study, we tested intermittent and severe stress on herbivore and arthropod abundance in a cotton agro-ecosystem. Our goal was to determine how these types of drought influence herbivore abundance on stressed plants and the relationship between herbivore abundance and stress-related nutrients. We found that intermittent and severe water-deficit stress had different effects on insect herbivores, signifying that drought severity influences herbivore abundance. Piercing–sucking herbivores such as thrips, stink bugs, and leafhoppers were more abundant on intermittently stressed plants than on severely stressed plants. Drought did not significantly affect chewing herbivores, and their abundance was inconsistent on stressed and well-watered plants. Furthermore, nutrient concentrations were similar between stressed and unstressed plants, but herbivore abundance was greater on intermittently stressed plants, suggesting that other physiological characteristics of stressed plants and herbivore feeding ecology must be considered. Our study suggests that the drought severity must be considered when predicting herbivore abundance on stressed plants.  相似文献   

8.
Summary. Previous studies have synthesized life-table data from herbivore species to identify general trends in the demography of herbivorous insects. Frequency-based analyses were used to ascertain which of five mortality sources (enemies, plant factors, competition, weather, intrinsic developmental failure) and which of five ecological characteristics of herbivores (feeding biology, invasion status of the herbivore, latitude, cultivation, and successional status of the habitat) had important influences on mortality patterns. Here these results are reinforced with a quantitative analysis that relies on actual numbers of herbivores killed at different developmental stages by each of the five mortality sources in different ecological settings. We also examine the relationship between taxonomic category (Coleoptera, Diptera, Lepidoptera, and Hymenoptera) and mortality. The analysis identified developmental changes of herbivores as having an important influence on sources of mortality; feeding biology, latitude, and cultivation status also influenced the distribution of mortality sources. Other aspects of the herbivores’ ecology and taxonomy had limited effects. Natural enemies were identified as the most important mortality source overall, and their importance increased from the early larval stages to the pupal stages. They also kill more exophytic insects than endophytic insects, and kill a higher proportion of insects in cultivated habitats than in natural habitats. Weather kills more temperate-zone immatures than tropical/subtropical immatures. The results of the quantitative analysis generally confirm the earlier frequency-based tests. Several predictions that can serve as the foundation of an empirically-based theory of herbivore demography are offered: (1) natural enemies are the dominant cause of mortality in exophytic herbivore populations and may compete more intensely than on endophytics; (2) plant factors and enemies play a more balanced role in endophytic populations; (3) exophytic species should be particularly susceptible to top-down effects, especially in agroecosystems; (4) plant defences will often have sublethal effects, but when they are lethal they will be most important as the hatchling larva is just getting established on the plant. These predictions should be viewed as a challenge to engage in a broader way of thinking about herbivore demography.  相似文献   

9.
Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2–3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.  相似文献   

10.
The growth rates of insect herbivores commonly decrease when they feed on mature leaves due to the combined effects of several nutritional and physiological mechanisms. Environmental stresses during leaf development may also decrease herbivore performance. The present study tests two main hypotheses to help clarify the importance of these factors for the nutrition and growth of an insect herbivore: (i) decreases in nutrient levels, consumption rates and nutrient assimilation efficiencies impact negatively on herbivores feeding on mature leaves and (ii) wind stress has a negative impact on herbivores feeding on mature leaves. The results show that mature poplar (Populus alba × Populus tremula) leaves have decreased levels of protein and increased levels of fibre, and that growth rates of gypsy moth (Lymantria dispar L.) are decreased on mature leaves in association with decreased consumption rates. However, in contrast to the first hypothesis, protein and carbohydrate are assimilated efficiently (74–82% and 84–87%, respectively) from immature and mature poplar leaves. The larvae are able to chew mature leaves as efficiently as immature leaves, potentially maximizing nutrient extraction. By contrast to the second hypothesis, wind‐stressed leaves have no significant detrimental effects on nutrient assimilation efficiencies, and the lower growth rates of L. dispar larvae feeding on mature wind‐stressed leaves can be explained by lower consumption rates. Therefore, the availability of nutrients to herbivores feeding on mature tree leaves is not necessarily impacted by lower assimilation efficiencies, even when leaves develop under wind stress. These results help explain some of the large variation between the nutritional qualities of trees for forest Lepidoptera.  相似文献   

11.
The decisions that animals must make to achieve a balance between quantity and quality of resources become more difficult when their habitats are patchy and differ greatly in quality across space and time. Koalas are a prime subject to study this problem because they have a specialised diet of eucalypt leaves and need to balance nutrient and water intake against toxins in the leaves, all of which can change with soil type and climate. Koalas are nocturnal and spend most of the day resting and therefore choose trees for reasons other than feeding, particularly for thermoregulation. We GPS‐tracked 40 koalas over 3 yr to determine their shift in tree selection between day and night, and in relation to daily maximum temperature, in a patchy rural landscape in north‐western NSW, Australia. The species, degree of shelter, diameter, height and elevation of each visited tree were recorded. We used generalised linear mixed effects models to compare tree use between day and night and maximum daily temperature. Koalas used more feed‐trees during the night, and more shelter‐trees during the day. They also selected taller trees with more shelter in the day compared with night. As daytime temperatures rose, koalas increasingly selected taller trees at lower elevations. Our results demonstrate that koalas need taller trees, and non‐feed species with shadier/denser foliage, to provide shelter from heat. This highlights the need both for the retention of taller, mature trees, such as remnant paddock trees, and the planting of both food and shelter trees to increase habitat area and connectivity across the landscape for arboreal species. Retaining and planting trees that provide optimum habitat will help arboreal folivores cope with the more frequent droughts and heatwaves expected with climate change.  相似文献   

12.
The mechanisms through which trophic interactions between species are indirectly mediated by distant members in a food web have received increasing attention in the field of ecology of multitrophic interactions. Scarcely studied aspects include the effects of varying plant chemistry on herbivore immune defences against parasitoids. We investigated the effects of constitutive and herbivore-induced variation in the nutritional quality of wild and cultivated populations of cabbage (Brassica oleracea) on the ability of small cabbage white Pieris rapae (Lepidoptera, Pieridae) larvae to encapsulate eggs of the parasitoid Cotesia glomerata (Hymenoptera, Braconidae). Average encapsulation rates in caterpillars parasitised as first instars were low and did not differ among plant populations, with caterpillar weight positively correlating with the rates of encapsulation. When caterpillars were parasitised as second instar larvae, encapsulation of eggs increased. Caterpillars were larger on the cultivated Brussels sprouts plants and exhibited higher levels of encapsulation compared with caterpillars on plants of either of the wild cabbage populations. Observed differences in encapsulation rates between plant populations could not be explained exclusively by differences in host growth on the different Brassica populations. Previous herbivore damage resulted in a reduction in the larval weight of subsequent herbivores with a concomitant reduction in encapsulation responses on both Brussels sprouts and wild cabbage plants. To our knowledge this is the first study demonstrating that constitutive and herbivore-induced changes in plant chemistry act in concert, affecting the immune response of herbivores to parasitism. We argue that plant-mediated immune responses of herbivores may be important in the evaluation of fitness costs and benefits of herbivore diet on the third trophic level.  相似文献   

13.
When consuming plants, herbivores must deal with both low nutritional quality from cell wall constituents and potentially toxic plant secondary metabolites, which are often inversely related. Herbivores that consume a highly nutritious, but chemically defended plant, may consume high levels of toxins that require energy for detoxification. Alternatively, herbivores may avoid consuming high levels of toxins by consuming a diverse diet that may be lower in overall nutritional quality. In this study, we assessed the relationship among nutritional restriction, detoxification and diet diversity in a free‐ranging wild herbivore. We collected urine deposited in the snow (hereafter, snow‐urine) and feces by free‐ranging moose Alces americanus, a generalist browser, during winter. We used the ratio of urinary urea nitrogen to creatinine (UN:C), measured in snow‐urine samples, as an indicator of nutritional restriction, and the ratio of glucuronic acid to creatinine (GA:C), as an indicator of investment in detoxification. We used microhistology to determine diet composition from fecal pellets. GA:C and UN:C were positively associated, suggesting that nutritional condition tends to be worse for individuals investing more in detoxification. We found, after accounting for the influence of winter severity, diet diversity and UN:C to be negatively related, suggesting that increasingly diverse diets were associated with improved nutritional condition. Overall, the most important predictor of UN:C was winter severity and proportion of diet comprised of balsam fir Abies balsamea. Physiological indicators of nutritional restriction tended to be worse during severe winters and among individuals that had consumed more balsam fir. These results highlight complex relationships among environmental conditions, foraging decisions, and costs of detoxification that can influence nutritional condition of herbivores.  相似文献   

14.
Manipulations of herbivores in protected areas may have profound effects on ecosystems. We examine short‐term effects on tree species assemblages and resource utilization by a mesoherbivore and small‐size herbivores (ungulates <20 kg) in Sand Forest, after browsing release from a megaherbivore (elephant), or both a mega‐ and mesoherbivore (nyala), respectively. Effects were experimentally separated using replicated exclosures where all trees were counted, identified to species and browsing events recorded. Tree species assemblages were impacted by both elephant and nyala, and by each herbivore species individually. Tree turnover rates were higher where both herbivore species were present than in their combined absence. Diet was segregated among elephant, nyala and small‐size herbivores. Both resource specificity and browsing pressure by nyala increased in absence of elephant; small‐size herbivores increased resource specificity in absence of elephant, and increased browsing pressure in absence of both elephant and nyala. This implies interference competition with competitive release. The indirect effect of the manipulation of herbivore populations, through the removal of one or two herbivore species, caused a shift in tree species composition and diet of smaller‐size herbivores. These indirect effects, especially on tree species composition, can become critical as they affect vegetation dynamics, biodiversity and ecosystem processes. Therefore, in order to conserve habitats and biodiversity across all trophic levels, conservation managers should consider the effects of: (1) the full herbivore assemblage present; and (2) any effects of altering the relative and absolute abundance of different herbivore species on other herbivore species and vegetation.  相似文献   

15.
In the Australian state of Victoria, the history of koalas and their management has resulted in the homogenisation and reduction of genetic diversity in many contemporary populations. Decreased genetic diversity may reduce a species’ ability to adapt to future environmental pressures such as climate change or disease. The South Gippsland koala population is considered to be unique in Victoria, as it is believed to be a remnant population, not originating from managed populations that have low genetic variation. This study investigated genetic structure and diversity of koalas in South Gippsland, with comparison to other populations in Victoria (French Island/Cape Otway, FI and Raymond Island, RI), New South Wales and south east Queensland. Population analyses were undertaken using both microsatellite genotype and mitochondrial DNA sequence data. Non-invasive sampling of koala scats was used to source koala DNA, allowing 222 South Gippsland koalas to be genotyped. Using nuclear data the South Gippsland koala population was found to be significantly differentiated (Djost 95% CI SG–RI?=?0.03–0.06 and SG–FI?=?0.08–012) and more diverse (AR 95% CI SG?=?4.7–5.6, RI?=?3.1–3.3, FI?=?3.0–3.3; p?=?0.001) than other Victorian koala populations, supporting the premise that koalas in the South Gippsland region are part of a remnant population, not derived from translocated island stock. These results were also supported by mitochondrial data where eight haplotypes (Pc4, Pc17, Pc26, Pc27, and Pc56–Pc59) were identified in South Gippsland while a single haplotype (Pc27) was found in all island koalas tested. Compared to other Victorian koala populations, greater genetic diversity found in South Gippsland koalas, may provide this population with a greater chance of survival in the face of future environmental pressures. The South Gippsland koala population is, therefore, of high conservation significance, warranting the implementation of strategies to conserve this population and its diversity into the future.  相似文献   

16.
Koalas are an iconic species of charismatic megafauna, of substantial social and conservation significance. They are widely distributed, often at low densities, and individuals can be difficult to detect, making population surveys challenging and costly. Consequently, koala population estimates have been limited and the results inconsistent. The aims of this study were to estimate the distribution, relative abundance and population size of the koalas on Magnetic Island, far north Queensland. Population densities were estimated in 18 different vegetation types present on the island using a Fecal Standing Crop Method. Koala density ranged from 0.404 ha−1, recorded in forest red gum and bloodwood woodland, to absence from eight of the vegetation types surveyed. The second highest density of 0.297 koalas ha−1 was recorded in mixed eucalypt woodland, which covers 45% of the island. The total abundance of koalas on Magnetic Island, not including those present in urban areas, was estimated at 825±175 (SEM). The large variation in koala density across vegetation types reinforces the need for sampling stratification when calculating abundance over large areas, as uniformity of habitat quality cannot be assumed. In this context, koala populations also occur in low densities in areas generally regarded as poor quality koala habitat. These results highlight the importance of protecting vegetation communities not traditionally considered to have high conservation value to koalas, as these habitats may be essential for maintaining viable, widespread, low-density populations. The results from this study provide a baseline to assess future trends in koala distribution, density and abundance on Magnetic Island.  相似文献   

17.
Marsh KJ  Wallis IR  Foley WJ 《Oecologia》2007,154(2):283-290
In a given period of time, herbivores often eat less as dietary plant secondary metabolite (PSM) concentrations increase. This reduction in total food intake is interpreted as a need for the herbivore to regulate PSM ingestion in order to avoid toxication. However, regulation of PSM ingestion involves more than the reduction of total intake; it involves an alteration of meal patterns, through a reduction in the number and/or the size of the meals eaten. Despite this, studies of how herbivores alter their meal patterns when offered varying concentrations of PSMs are rare. We investigated whether koalas adjust the number and/or the size of their meals when offered eucalypt foliage varying naturally in concentrations of formylated phloroglucinol compounds (FPCs), a group of PSMs that have previously been shown to inhibit total food intake. High FPC concentrations caused koalas to eat more slowly, eat shorter meals and eat less per meal, which resulted in a reduced total intake. Because increasing FPC concentrations did not cause koalas to alter the number of meals that they ate, clear individual differences between koalas were observed, where some consistently ate fewer larger meals and others ate many smaller meals. Thus, different feeding strategies may still achieve the same outcome of a regulated intake of PSMs. The changes observed match the meal patterns of other herbivores ingesting PSMs known to stimulate nausea and emetic pathways, supporting the idea that feedback signals from nausea are an important way that koalas avoid toxication when eating eucalypt foliage.  相似文献   

18.
Few attempts have been made to determine how soil productivity influences diet selection in herbivores, likely because environmental characteristics known to influence diet selection such as plant community structure and herbivore nutritional demands are often confounded with changes in soil productivity. We designed a soil-amendment experiment to isolate the effects of soil productivity on diet selection by manipulating soil productivity and quantifying intraspecific plant selection within a population of white-tailed deer (Odocoileus virginianus). We hypothesized soil productivity would indirectly influence deer plant selection by directly affecting plant tissue chemistry. Soil productivity indeed influenced diet selection indirectly because soil amendments only affected deer plant selection when palatable plants were present. Soil amendments increased plant phosphorus concentrations, and plant phosphorus concentrations explained 47% of the variation in diet selection. Thus, our data indicate plant nutritional quality mediates the indirect effects of soil productivity on herbivore diet selection. Previous research demonstrating differential influences of herbivory on plant communities across a soil productivity gradient may in part be explained by indirect effects of soil productivity on diet selection.  相似文献   

19.
Woody climbers or, ‘lianas’, are one of the features that characterise rainforests. They contribute substantially to plant diversity and leaf biomass which makes them a potentially important food source for herbivores. Here, we focus on insect herbivores, folivores in particular, to show how disparities in the quantitative and qualitative availability of leaves between lianas and trees may differentially influence insect folivory and the herbivore communities themselves. We develop a conceptual model and show that lianas in general have lower structural and chemical defences, a greater nutritional profile and a preferable phenology in comparison with trees, which, contrary to our expectations, has led to assemblages of more‐specialised insects. The impacts this has on higher trophic levels and broader ecological networks, however, are poorly known. We show through a study of four tropical floras from different biogeographic realms that lianas are likely to be a target for a wide range of insect herbivore taxa as they are a phylogenetically diverse group and increase diversity of higher taxa at local scales. This, in combination with their highly palatable leaves, may also make them a suitable temporary food source for insects during times when preferred host plants are scarce. This phenomenon has been observed in mammalian herbivores but awaits investigation in insects as does the effects this may have on survival and fitness. Apparent recent increases in liana abundances in some forests, likely due to climate change, makes understanding their role in supporting and maintaining biodiversity an increasingly important and necessary challenge. Since trees or saplings have usually been the subject of studies on insect herbivory, major knowledge gaps remain about the ways in which lianas contribute to, support and maintain the ecosystems in which they exist. We use our conceptual model to guide future research directions and express the necessity for caution when extrapolating explanations of herbivory derived from data on trees to growth forms with fundamentally different ecologies.  相似文献   

20.
Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compounds. Using a wild rodent herbivore, the desert woodrat (Neotoma lepida), we investigated genomic structural variation, sequence variability, and expression patterns in a multigene subfamily involved in xenobiotic metabolism, cytochrome P450 2B (CYP2B). We hypothesized that differences in CYP2B expression and sequence diversity could explain differential abilities of woodrat populations to consume native plant toxins. Woodrats from two distinct populations were fed diets supplemented with either juniper (Juniperus osteosperma) or creosote bush (Larrea tridentata), plants consumed by woodrats in their respective desert habitats. We used Southern blot and quantitative PCR to determine that the genomic copy number of CYP2B in both populations was equivalent, and similar in number to known rodent copy number. We compared CYP2B expression patterns and sequence diversity using cloned hepatic CYP2B cDNA. The resulting sequences were very diverse, and clustered into four major clades by amino acid similarity. Sequences from the experimental treatments were distributed non-randomly across a CYP2B tree, indicating unique expression patterns from woodrats on different diets and from different habitats. Furthermore, within each major CYP2B clade, sequences shared a unique combination of amino acid residues at 13 sites throughout the protein known to be important for CYP2B enzyme function, implying differences in the function of each major CYP2B variant. This work is the most comprehensive investigation of the genetic diversity of a detoxification enzyme subfamily in a wild mammalian herbivore, and contributes an initial genetic framework to our understanding of how a wild herbivore responds to critical changes in its diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号