首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels.Due to agricultural practices and climate change, soil salinity has become a serious factor limiting the productivity and quality of agricultural crops (Zhu, 2007). Worldwide, high salinity in the soil damages approximately 20% of total irrigated lands and takes 1.5 million ha out of production each year (Munns and Tester, 2008). In general, high salinity affects plant growth and development by reducing plant water potential, altering nutrient uptake, and increasing the accumulation of toxic ions (Hasegawa et al., 2000; Munns, 2002; Zhang and Shi, 2013). Together, these effects severely reduce plant growth and survival.Because the root is the first organ to sense high salinity, salt stress plays a direct, important role in modulating root system architecture (Wang et al., 2009). For instance, salt stress negatively regulates root hair formation and gravitropism (Sun et al., 2008; Wang et al., 2008). The role of salt in lateral root formation depends on the NaCl concentration. While high NaCl levels inhibit lateral root formation, lower NaCl levels stimulate lateral root formation in an auxin-dependent manner (Zolla et al., 2010; Ji et al., 2013). The root meristem plays an essential role in sustaining root growth (Perilli et al., 2012). Salt stress inhibits primary root elongation by suppressing root meristem activity (West et al., 2004). However, how this inhibition occurs remains largely unclear.Plant hormones are important intermediary signaling compounds that function downstream of environmental stimuli. Among plant hormones, indole-3-acetic acid (IAA) is thought to play a fundamental role in root system architecture by regulating cell division, expansion, and differentiation. In Arabidopsis (Arabidopsis thaliana) root tips, a distal auxin maximum is formed and maintained by polar auxin transport (PAT), which determines the orientation and extent of cell division in the root meristem as well as root pattern formation (Sabatini et al., 1999). PINFORMED (PIN) proteins, which are components of the auxin efflux machinery, regulate primary root elongation and root meristem size (Blilou et al., 2005; Dello Ioio et al., 2008; Yuan et al., 2013, 2014). The auxin signal transduction pathway is activated by direct binding of auxin to its receptor protein, TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB), promoting the degradation of Aux/IAA proteins, releasing auxin response factors (ARFs), and activating the expression of auxin-responsive genes (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and Leyser, 2005). Aux/IAA proteins are short-lived, nuclear-localized proteins that play key roles in auxin signal activation and root growth modulation (Rouse et al., 1998). Other hormones and stresses often regulate auxin signaling by affecting Aux/IAA protein stability (Lim and Kunkel, 2004; Nemhauser et al., 2004; Wang et al., 2007; Kushwah and Laxmi, 2014).Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants (He et al., 2004; Fernández-Marcos et al., 2011; Shi et al., 2012), including important roles in the regulation of root growth and development. NO functions downstream of auxin during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002). Exogenous auxin-induced NO biosynthesis is associated with nitrate reductase activity during lateral root formation, and NO is necessary for auxin-induced lateral root and root hair development (Pagnussat et al., 2002; Lombardo et al., 2006). Pharmacological and genetic analyses in Arabidopsis indicate that NO suppresses primary root growth and root meristem activity (Fernández-Marcos et al., 2011). Additionally, both exogenous application of the NO donor sodium nitroprusside (SNP) and overaccumulation of NO in the mutant chlorophyll a/b binding protein underexpressed1 (cue1)/nitric oxide overproducer1 (nox1) result in reduced PIN1 expression and auxin accumulation in root tips. The auxin receptors protein TIR1 is S-nitrosylated by NO, suggesting that this protein is a direct target of NO in the regulation of root development (Terrile et al., 2012).Because NO is a free radical, NO levels are dynamically regulated by endogenous and environmental cues. Many phytohormones, including abscisic acid, auxin, cytokinin, salicylic acid, jasmonic acid, and ethylene, induce NO biosynthesis (Zottini et al., 2007; Kolbert et al., 2008; Tun et al., 2008; García et al., 2011). In addition, many abiotic and biotic stresses or stimuli, such as cold, heat, salt, drought, heavy metals, and pathogens/elicitors, also stimulate NO biosynthesis (Zhao et al., 2009; Mandal et al., 2012). Salt stress stimulates NO and ONOO accumulation in roots (Corpas et al., 2009), but the contribution of NO to root meristem growth under salinity stress has yet to be examined in detail.In this study, we found that salt stress significantly down-regulated the expression of PIN genes and promoted AUXIN RESISTANT3 (AXR3)/IAA17 stabilization. Furthermore, salt stress stimulated NO accumulation, and pharmacological inhibition of NO biosynthesis compromised the salt-mediated reduction in root meristem size. Our results support a model in which salt stress reduces root meristem size by increasing NO accumulation, which represses PIN expression and stabilizes IAA17, thereby reducing auxin levels and repressing auxin signaling.  相似文献   

2.
3.
In plant cells, secretory and endocytic routes intersect at the trans-Golgi network (TGN)/early endosome (EE), where cargos are further sorted correctly and in a timely manner. Cargo sorting is essential for plant survival and therefore necessitates complex molecular machinery. Adaptor proteins (APs) play key roles in this process by recruiting coat proteins and selecting cargos for different vesicle carriers. The µ1 subunit of AP-1 in Arabidopsis (Arabidopsis thaliana) was recently identified at the TGN/EE and shown to be essential for cytokinesis. However, little was known about other cellular activities affected by mutations in AP-1 or the developmental consequences of such mutations. We report here that HAPLESS13 (HAP13), the Arabidopsis µ1 adaptin, is essential for protein sorting at the TGN/EE. Functional loss of HAP13 displayed pleiotropic developmental defects, some of which were suggestive of disrupted auxin signaling. Consistent with this, the asymmetric localization of PIN-FORMED2 (PIN2), an auxin transporter, was compromised in the mutant. In addition, cell morphogenesis was disrupted. We further demonstrate that HAP13 is critical for brefeldin A-sensitive but wortmannin-insensitive post-Golgi trafficking. Our results show that HAP13 is a key link in the sophisticated trafficking network in plant cells.Plant cells contain sophisticated endomembrane compartments, including the endoplasmic reticulum, the Golgi, the trans-Golgi network (TGN)/early endosome (EE), the prevacuolar compartments/multivesicular bodies (PVC/MVB), various types of vesicles, and the plasma membrane (PM; Ebine and Ueda, 2009; Richter et al., 2009). Intracellular protein sorting between the various locations in the endomembrane system occurs in both secretory and endocytic routes (Richter et al., 2009; De Marcos Lousa et al., 2012). Vesicles in the secretory route start at the endoplasmic reticulum, passing through the Golgi before reaching the TGN/EE, while vesicles in the endocytic route start from the PM before reaching the TGN/EE (Dhonukshe et al., 2007; Viotti et al., 2010). The TGN/EE in Arabidopsis (Arabidopsis thaliana) is an independent and highly dynamic organelle transiently associated with the Golgi (Dettmer et al., 2006; Lam et al., 2007; Viotti et al., 2010), distinct from the animal TGN. Once reaching the TGN/EE, proteins delivered by their vesicle carriers are subject to further sorting, being incorporated either into vesicles that pass through the PVC/MVB before reaching the vacuole for degradation or into vesicles that enter the secretory pathway for delivery to the PM (Ebine and Ueda, 2009; Richter et al., 2009). Therefore, the TGN/EE is a critical sorting compartment that lies at the intersection of the secretory and endocytic routes.Fine-tuned control of intracellular protein sorting at the TGN/EE is essential for plant development (Geldner et al., 2003; Dhonukshe et al., 2007, 2008; Richter et al., 2007; Kitakura et al., 2011; Wang et al., 2013). An auxin gradient is crucial for pattern formation in plants, whose dynamic maintenance requires the polar localization of auxin efflux carrier PINs through endocytic recycling (Geldner et al., 2003; Blilou et al., 2005; Paciorek et al., 2005; Abas et al., 2006; Jaillais et al., 2006; Dhonukshe et al., 2007; Kleine-Vehn et al., 2008). Receptor-like kinases (RLKs) have also been recognized as major cargos undergoing endocytic trafficking, which are either recycled back to the PM or sent for vacuolar degradation (Geldner and Robatzek, 2008; Irani and Russinova, 2009). RLKs are involved in most if not all developmental processes of plants (De Smet et al., 2009).Intracellular protein sorting relies on sorting signals within cargo proteins and on the molecular machinery that recognizes sorting signals (Boehm and Bonifacino, 2001; Robinson, 2004; Dhonukshe et al., 2007). Adaptor proteins (AP) play a key role (Boehm and Bonifacino, 2001; Robinson, 2004) in the recognition of sorting signals. APs are heterotetrameric protein complexes composed of two large subunits (β and γ/α/δ/ε), a small subunit (σ), and a medium subunit (µ) that is crucial for cargo selection (Boehm and Bonifacino, 2001). APs associate with the cytoplasmic side of secretory and endocytic vesicles, recruiting coat proteins and recognizing sorting signals within cargo proteins for their incorporation into vesicle carriers (Boehm and Bonifacino, 2001). Five APs have been identified so far, classified by their components, subcellular localization, and function (Boehm and Bonifacino, 2001; Robinson, 2004; Hirst et al., 2011). Of the five APs, AP-1 associates with the TGN or recycling endosomes (RE) in yeast and mammals (Huang et al., 2001; Robinson, 2004), mediating the sorting of cargo proteins to compartments of the endosomal-lysosomal system or to the basolateral PM of polarized epithelial cells (Gonzalez and Rodriguez-Boulan, 2009). Knockouts of AP-1 components in multicellular organisms resulted in embryonic lethality (Boehm and Bonifacino, 2001; Robinson, 2004).We show here that the recently identified Arabidopsis µ1 adaptin AP1M2 (Park et al., 2013; Teh et al., 2013) is a key component in the cellular machinery mediating intracellular protein sorting at the TGN/EE. AP1M2 was previously named HAPLESS13 (HAP13), whose mutant allele hap13 showed male gametophytic lethality (Johnson et al., 2004). In recent quests for AP-1 in plants, HAP13/AP1M2 was confirmed as the Arabidopsis µ1 adaptin based on its interaction with other components of the AP-1 complex as well as its localization at the TGN (Park et al., 2013; Teh et al., 2013). A novel mutant allele of HAP13/AP1M2, ap1m2-1, was found to be defective in the intracellular distribution of KNOLLE, leading to defective cytokinesis (Park et al., 2013; Teh et al., 2013). However, it was not clear whether HAP13/AP1M2 mediated other cellular activities and their developmental consequences. Using the same mutant allele, we found that functional loss of HAP13 (hap13-1/ap1m2-1) resulted in a full spectrum of growth defects, suggestive of compromised auxin signaling and of defective RLK signaling. Cell morphogenesis was also disturbed in hap13-1. Importantly, hap13-1 was insensitive to brefeldin A (BFA) washout, indicative of defects in guanine nucleotide exchange factors for ADP-ribosylation factor (ArfGEF)-mediated post-Golgi trafficking. Furthermore, HAP13/AP1M2 showed evolutionarily conserved function during vacuolar fusion, providing additional support to its identity as a µ1 adaptin. These results demonstrate the importance of the Arabidopsis µ1 adaptin for intracellular protein sorting centered on the TGN/EE.  相似文献   

4.
5.
6.
Nitric oxide (NO) is a small redox molecule that acts as a signal in different physiological and stress-related processes in plants. Recent evidence suggests that the biological activity of NO is also mediated by S-nitrosylation, a well-known redox-based posttranslational protein modification. Here, we show that during programmed cell death (PCD), induced by both heat shock (HS) or hydrogen peroxide (H2O2) in tobacco (Nicotiana tabacum) Bright Yellow-2 cells, an increase in S-nitrosylating agents occurred. NO increased in both experimentally induced PCDs, although with different intensities. In H2O2-treated cells, the increase in NO was lower than in cells exposed to HS. However, a simultaneous increase in S-nitrosoglutathione (GSNO), another NO source for S-nitrosylation, occurred in H2O2-treated cells, while a decrease in this metabolite was evident after HS. Consistently, different levels of activity and expression of GSNO reductase, the enzyme responsible for GSNO removal, were found in cells subjected to the two different PCD-inducing stimuli: low in H2O2-treated cells and high in the heat-shocked ones. Irrespective of the type of S-nitrosylating agent, S-nitrosylated proteins formed upon exposure to both of the PCD-inducing stimuli. Interestingly, cytosolic ascorbate peroxidase (cAPX), a key enzyme controlling H2O2 levels in plants, was found to be S-nitrosylated at the onset of both PCDs. In vivo and in vitro experiments showed that S-nitrosylation of cAPX was responsible for the rapid decrease in its activity. The possibility that S-nitrosylation induces cAPX ubiquitination and degradation and acts as part of the signaling pathway leading to PCD is discussed.Nitric oxide (NO) is a gaseous and diffusible redox molecule that acts as a signaling compound in both animal and plant systems (Pacher et al., 2007; Besson-Bard et al., 2008). In plants, NO has been found to play a key role in several physiological processes, such as germination, lateral root development, flowering, senescence, stomatal closure, and growth of pollen tubes (Beligni and Lamattina, 2000; Neill et al., 2002; Correa-Aragunde et al., 2004; He et al., 2004; Prado et al., 2004; Carimi et al., 2005). In addition, NO has been reported to be involved in plant responses to both biotic and abiotic stresses (Leitner et al., 2009; Siddiqui et al., 2011) and in the signaling pathways leading to programmed cell death (PCD; Delledonne et al., 1998; de Pinto et al., 2006; De Michele et al., 2009; Lin et al., 2012; Serrano et al., 2012).The cellular environment may greatly influence the chemical reactivity of NO, giving rise to different biologically active NO-derived compounds, collectively named reactive nitrogen species, which amplify and differentiate its ability to activate physiological and stress-related processes. Many of the biological properties of NO are due to its high affinity with transition metals of metalloproteins as well as its reactivity with reactive oxygen species (ROS; Hill et al., 2010). However, recent evidence suggests that protein S-nitrosylation, due to the addition of NO to reactive Cys thiols, may act as a key mechanism of NO signaling in plants (Wang et al., 2006; Astier et al., 2011). NO is also able to react with reduced glutathione (GSH), the most abundant cellular thiol, thus producing S-nitrosoglutathione (GSNO), which also acts as an endogenous trans-nitrosylating agent. GSNO is also considered as a NO store and donor and, as it is more stable than NO, acts as a long-distance NO transporter through the floematic flux (Malik et al., 2011). S-Nitrosoglutathione reductase (GSNOR), which is an enzyme conserved from bacteria to humans, has been suggested to play a role in regulating S-nitrosothiols (SNO) and the turnover of S-nitrosylated proteins in plants (Liu et al., 2001; Rusterucci et al., 2007).A number of proteins involved in metabolism, stress responses, and redox homeostasis have been identified as potential targets for S-nitrosylation in Arabidopsis (Arabidopsis thaliana; Lindermayr et al., 2005). During the hypersensitive response (HR), 16 proteins were identified to be S-nitrosylated in the seedlings of the same species (Romero-Puertas et al., 2008); in Citrus species, S-nitrosylation of about 50 proteins occurred in the NO-mediated resistance to high salinity (Tanou et al., 2009).However, while the number of candidate proteins for S-nitrosylation is increasing, the functional significance of protein S-nitrosylation has been explained only in a few cases, such as for nonsymbiotic hemoglobin (Perazzolli et al., 2004), glyceraldehyde 3-phosphate dehydrogenase (Lindermayr et al., 2005; Wawer et al., 2010), Met adenosyltransferase (Lindermayr et al., 2006), and metacaspase9 (Belenghi et al., 2007). Of particular interest are the cases in which S-nitrosylation involves enzymes controlling ROS homeostasis. For instance, it has been reported that S-nitrosylation of peroxiredoxin IIE regulates the antioxidant function of this enzyme and might contribute to the HR (Romero-Puertas et al., 2007). It has also been shown that in the immunity response, S-nitrosylation of NADPH oxidase inactivates the enzyme, thus reducing ROS production and controlling HR development (Yun et al., 2011).Recently, S-nitrosylation has also been shown to be involved in PCD of nitric oxide excess1 (noe1) rice (Oryza sativa) plants, which are mutated in the OsCATC gene coding for catalase (Lin et al., 2012). In these plants, which show PCD-like phenotypes under high-light conditions, glyceraldehyde 3-phosphate dehydrogenase and thioredoxin are S-nitrosylated. This suggests that the NO-dependent regulation of these proteins is involved in plant PCD, similar to what occurs in animal apoptosis (Sumbayev, 2003; Hara et al., 2005; Lin et al., 2012). The increase in hydrogen peroxide (H2O2) after exposure to high light in noe1 plants is responsible for the production of NO required for leaf cell death induction (Lin et al., 2012). There is a strict relationship between H2O2 and NO in PCD activation (Delledonne et al., 2001; de Pinto et al., 2002); however, the mechanism of this interplay is largely still unknown (for review, see Zaninotto et al., 2006; Zhao, 2007; Yoshioka et al., 2011). NO can induce ROS production and vice versa, and their reciprocal modulation in terms of intensity and timing seems to be crucial in determining PCD activation and in controlling HR development (Delledonne et al., 2001; Zhao, 2007; Yun et al., 2011).In previous papers, we demonstrated that heat shock (HS) at 55°C and treatment with 50 mm H2O2 promote PCD in tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells (Vacca et al., 2004; de Pinto et al., 2006; Locato et al., 2008). In both experimental conditions, NO production and decrease in cytosolic ascorbate peroxidase (cAPX) were observed as early events in the PCD pathway, and cAPX decrease has been suggested to contribute to determining the redox environment required for PCD (de Pinto et al., 2006; Locato et al., 2008).In this study, the production of nitrosylating agents (NO and GSNO) in the first hours of PCD induction by HS or H2O2 treatment in tobacco BY-2 cells and their role in PCD were studied. The possibility that S-nitrosylation could be a first step in regulating cAPX activity and turnover as part of the signaling pathway leading to PCD was also investigated.  相似文献   

7.
8.
9.
10.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

11.
12.
13.
Polar transport of the hormone auxin through tissues and organs depends on membrane proteins, including some B-subgroup members of the ATP-binding cassette (ABC) transporter family. The messenger RNA level of at least one B-subgroup ABCB gene in Arabidopsis (Arabidopsis thaliana), ABCB19, increases upon treatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), possibly to compensate for an inhibitory effect of the drug on ABCB19 activity. Consistent with this hypothesis, NPPB blocked ion channel activity associated with ABCB19 expressed in human embryonic kidney cells as measured by patch-clamp electrophysiology. NPPB inhibited polar auxin transport through Arabidopsis seedling roots similarly to abcb19 mutations. NPPB also inhibited shootward auxin transport, which depends on the related ABCB4 protein. NPPB substantially decreased ABCB4 and ABCB19 protein levels when cycloheximide concomitantly inhibited new protein synthesis, indicating that blockage by NPPB enhances the degradation of ABCB transporters. Impairing the principal auxin transport streams in roots with NPPB caused aberrant patterns of auxin signaling reporters in root apices. Formation of the auxin-signaling gradient across the tips of gravity-stimulated roots, and its developmental consequence (gravitropism), were inhibited by micromolar concentrations of NPPB that did not affect growth rate. These results identify ion channel activity of ABCB19 that is blocked by NPPB, a compound that can now be considered an inhibitor of polar auxin transport with a defined molecular target.The directed flow of auxin from cell to cell, through tissues and organs, from sites of synthesis to sites of action underlies the coordination of many processes during plant growth and development. Arabidopsis (Arabidopsis thaliana) PIN-FORMED (PIN) genes were the first found to be necessary for the phenomenon known as polar auxin transport (Okada et al., 1991; Chen et al., 1998; Gälweiler et al., 1998). Asymmetric localization of PIN proteins to the downstream ends of each cell in auxin-transporting tissues was correctly suggested to be a molecular component of the efflux mechanisms (Gälweiler et al., 1998) originally hypothesized as necessary for a directionally biased, or polar movement of auxin through tissues (Rubery and Sheldrake, 1974; Raven, 1975; Goldsmith, 1977; Goldsmith et al., 1981). Other members of the eight-gene PIN family in Arabidopsis were subsequently shown to affect auxin distribution in various tissues and stages of development (Křeček et al., 2009).Shortly after the breakthrough work on PIN1, members of the B subfamily of ATP-binding cassette (ABCB) transporters were discovered to be equally necessary for the phenomenon of polar auxin transport. They were originally called P-GLYCOPROTEIN1 (Dudler and Hertig, 1992; Sidler et al., 1998) and MULTIDRUG RESISTANCE1 (Noh et al., 2001) and ultimately renamed AtABCB1 and AtABCB19, respectively (Verrier et al., 2008). The connection between ABCB transporters and auxin transport was first made through the analysis of Arabidopsis knockout mutants. Polar auxin flow through abcb19 mutant stems is impaired by approximately 80% compared with the wild type and further reduced in abcb1 abcb19 double mutants (Noh et al., 2001). Resultant effects on development include abnormal hypocotyl tropisms (Noh et al., 2003) and the photomorphogenic control of hypocotyl elongation (Wu et al., 2010). Import of indole-3-acetic acid (IAA) to cotyledons through the petiole is reduced by 50% in abcb19 mutants, and this is correlated with an equivalent reduction in cotyledon blade expansion (Lewis et al., 2009). In roots, loss of ABCB19 greatly impairs auxin flow toward the tip without any detectable effect on shootward flow (Lewis et al., 2007). Surprisingly, the only defect detected in abcb19 primary roots associated with this major disruption of auxin transport is greater meandering of the tip during elongation down a vertical agar surface; gravitropism is unaffected (Lewis et al., 2007). Outgrowth of lateral roots, although not their initiation, depends significantly on ABCB19-mediated tipward auxin transport (Wu et al., 2007). The emergence of adventitious roots at the base of hypocotyls from which roots have been excised from Arabidopsis seedlings depends strongly on ABCB19-mediated auxin accumulation at the sites of primordium initiation (Sukumar et al., 2013).The ABCB19 protein is present predominantly in the central cylinder and cortex of the root, consistent with its role in rootward auxin transport (Lewis et al., 2007; Mravec et al., 2008), whereas the closely related ABCB4 is restricted to the lateral root cap and epidermis (Cho et al., 2007), where it functions in shootward auxin transport (Lewis et al., 2007). Loss of ABCB4 function alters the timing and spatial pattern of gravitropic curvature development, apparently because the gravity-induced auxin gradient across the root is less rapidly dissipated by normal shootward (basipetal) transport of the hormone through the elongation zone (Lewis et al., 2007). Root hairs are significantly longer in abcb4 mutants, a phenotype attributed to auxin accumulation due to impaired efflux (Cho et al., 2007). ABCB4 is reported to conduct auxin influx or efflux, depending on the prevailing external auxin concentration (Kubeš et al., 2012).Noh et al. (2001) originally isolated ABCB19 in a molecular screen for genes encoding an ion channel activity in Arabidopsis cells shown by patch-clamp electrophysiology to be blocked by 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB). The rationale for the screen was that a plant challenged with a channel blocker would overexpress the gene encoding the blocked activity. A hypothesis emerging from the Noh et al. (2001) study is that ABCB19 encodes such an ion channel, which is required for polar auxin transport. If true, NPPB would be established as a blocker of polar auxin transport.Pharmacological inhibitors, used for decades in auxin transport research, have some advantages over mutations. Mutations can create complicating pleiotropic effects by inhibiting the process throughout development, while inhibitors can be used to impose an effect at a specific time. 1-Naphthylphthalamic acid (NPA) is the most commonly used inhibitor of polar auxin transport (Katekar and Geissler, 1980), but others are being discovered (Rojas-Pierce et al., 2007; Kim et al., 2010; Tsuda et al., 2011). Inhibitors are especially useful when their targets are well defined, which would be the case if NPPB blocked ABCB19 and induced its expression as hypothesized. The experiments reported here were designed to test this hypothesis with electrophysiological measurements of ABCB19 transport activity, radiotracer measurements of polar auxin transport in roots, levels of fluorescently tagged ABCB19 proteins, auxin reporter expression patterns, and machine-vision measurements of a root growth response that depends on auxin redistribution.  相似文献   

14.
Plants challenged with abiotic stress show enhanced polyamines levels. Here, we show that the polyamine putrescine (Put) plays an important role to alleviate Fe deficiency. The adc2-1 mutant, which is defective in Put biosynthesis, was hypersensitive to Fe deficiency compared with wild type (Col-1 of Arabidopsis [Arabidopsis thaliana]). Exogenous Put decreased the Fe bound to root cell wall, especially to hemicellulose, and increased root and shoot soluble Fe content, thus alleviating the Fe deficiency-induced chlorosis. Intriguingly, exogenous Put induced the accumulation of nitric oxide (NO) under both Fe-sufficient (+Fe) and Fe-deficient (-Fe) conditions, although the ferric-chelate reductase (FCR) activity and the expression of genes related to Fe uptake were induced only under -Fe treatment. The alleviation of Fe deficiency by Put was diminished in the hemicellulose-level decreased mutant-xth31 and in the noa1 and nia1nia2 mutants, in which the endogenous NO levels are reduced, indicating that both NO and hemicellulose are involved in Put-mediated alleviation of Fe deficiency. However, the FCR activity and the expression of genes related to Fe uptake were still up-regulated under -Fe+Put treatment compared with -Fe treatment in xth31, and Put-induced cell wall Fe remobilization was abolished in noa1 and nia1nia2, indicating that Put-regulated cell wall Fe reutilization is dependent on NO. From our results, we conclude that Put is involved in the remobilization of Fe from root cell wall hemicellulose in a process dependent on NO accumulation under Fe-deficient condition in Arabidopsis.Iron is an essential element for plant growth and development, and iron deficiency is the most common micronutrient deficiency in the world. To cope with iron deficiency, plants have evolved two distinct mechanisms for Fe acquisition from the rhizosphere. Strategy I, found in all dicots and monocots with the exception of graminaceous species, is characterized by (1) release of protons to acidify the rhizosphere, which is mediated in Arabidopsis (Arabidopsis thaliana) by the proton-translocating ATPase AHA2 (ARABIDOPSIS PLASMA MEMBRANE H+-ATPASE ISOFORM 2; Curie and Briat, 2003; Santi and Schmidt, 2009); (2) inducing ferric chelate reductase activity mediated by FRO2 (FERRIC REDUCTASE OXIDASE2; Robinson et al., 1999); and (3) uptake of Fe2+ by the metal transporter IRT1 (IRON REGULATED TRANSPORTER1; Eide et al., 1996; Vert et al., 2002). Strategy II, utilized by graminaceous monocots (Römheld and Marschner, 1986), is characterized by enhanced release of phytosiderophores that form chelates with Fe(III) (Curie and Briat, 2003). However, in addition to Fe acquisition, the mechanisms underlying the mobilization of Fe(III) also are a major challenge for us to understand.Recently, accumulating evidence has shown that phenolic compounds are important for iron mobilization. Rodríguez-Celma et al. (2013) showed that secretion of phenolics is critical for Arabidopsis Fe acquisition from low bioavailability sources, and then Fourcroy et al. (2014) and Schmidt et al. (2014) demonstrated that coumarins are the active compounds in this process. Schmid et al. (2014) confirmed that secretion of coumarins is an essential aspect of Arabidopsis Fe acquisition and provided extensive information on metabolomic changes elicited by Fe deficiency. However, under certain conditions Fe is not readily available, and Fe is difficult to mobilize; thus, Fe stored in the plant needs to be reutilized. For example, phenolics are secreted to remobilize the root apoplastic Fe and improve Fe nutrition in red clover (Trifolium pratense) and rice (Oryza sativa) (Jin et al., 2007; Bashir et al., 2011). Moreover, Lei et al. (2014) reported that the cell wall can be an important Fe source during periods of limited Fe supply. As the first barrier to encounter the soil environment, the cell wall is a pivotal site for most cationic ions in plants (Lozano-Rodríguez et al., 1997; Carrier et al., 2003). Hemicellulose contributes to the overall Al/Cd accumulation in the cell wall of Arabidopsis (Zhu et al., 2012, 2013) and also acts as a Fe pool (Lei et al., 2014). Over 75% of Fe in the root is retained in the cell wall (Bienfait et al., 1985), especially in the hemicellulose fraction (Lei et al., 2014). Thus, the cell wall is not only a site to immobilize an element and restrict its entrance into the cell, but also can serve as a pool to provide the nutrient when the supply from the growth medium is limited. However, the upstream mechanism of Fe reutilization through the cell wall, especially hemicellulose, is still far from clear.The responses to Fe deficiency in plants involve numerous phytohormones and signaling molecules, including auxin (Römheld and Marschner, 1981; Chen et al., 2010), ethylene (García et al., 2010; Wu et al., 2011), and NO (Graziano and Lamattina, 2007; Chen et al., 2010). Polyamines share common substrates with nitric oxide (NO) (Shi and Chan, 2014), and polyamines like spermidine and spermine rapidly induce a burst of NO in various plant species, indicating that NO is a potential intermediate of polyamine-mediated signaling.Polyamines, including putrescine (Put), spermidine, and spermine, are low Mr natural compounds with nitrogen-containing aliphatic structure and influence basic physiological and developmental events, such as cell division and differentiation, rhizogenesis, leaf senescence, zygotic, somatic embryogenesis, and development of flowers and fruits (Feirer et al., 1984; Galston et al., 1995; Bouchereau et al., 1999; Kakkar et al., 2000; Tun et al., 2001; Shi and Chan, 2014). The metabolism of polyamines in plant tissues is subject to strict regulation, and polyamine levels in plant roots change upon exposure to abiotic stress such as salt, drought, low and high temperature, heavy metals (Cu, Cr, Fe, and Ni), and oxidative stresses (Liu et al., 2005; Cheng et al., 2009; Wimalasekera et al., 2011; Tavladoraki et al., 2012).Ample evidence demonstrates the involvement of Put in responses to various types of abiotic stress, such as mineral deficiency in barley (Hordeum vulgare) leaves (Smith, 1973), high osmotic pressure in barley, corn, wheat, and wild oat leaves (Flores and Galston, 1982a), low pH in peeled oat (Avena sativa L. var Victory) leaf (Young and Galston, 1983), potassium deficiency in oat shoot and Arabidopsis thaliana (L.) Heynh (Young and Galston, 1984; Watson and Malmberg, 1996), and cadmium toxicity in oat and bean leaves (Weinstein et al., 1986). In animals, Put is produced either from Orn by Orn decarboxylase or from Arg by Arg decarboxylase (ADC) (Hanfrey et al., 2001). As there is no detectable Orn decarboxylase activity in Arabidopsis, the ADC route is critical for Put biosynthesis. Although there are two genes responsible for ADC activity, Urano et al. (2004) reported that the expression of ADC2 correlates well with the increment of free Put, indicating ADC2 plays an important role in Put biosynthesis in Arabidopsis. However, the role of Put under Fe deficiency in plants remains unknown.In this study, we found that Fe deficiency results in enhanced Put levels. Further, whereas exogenous Put alleviated Fe deficiency, the adc2-1 mutant, in which endogenous Put is decreased, exhibited a Fe deficiency-sensitive phenotype. We demonstrated that Put acts upstream of NO to decrease the Fe binding capacity of the cell wall, especially that of hemicellulose, thus resulting in greater Fe reutilization.  相似文献   

15.
16.
The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved.Stomata are responsible for leaves of terrestrial plants taking in carbon dioxide for photosynthesis and likewise regulate how much water plants evaporate through the stomatal pores (Chaerle et al., 2005). When experiencing water-deficient conditions, surviving plants balance photosynthesis with controlling water loss through the stomatal pores, which relies on turgor changes by pairs of highly differentiated epidermal cells surrounding the stomatal pore, called the guard cells (Haworth et al., 2011; Loutfy et al., 2012).Besides the characterization of the significant roles of abscisic acid (ABA) in regulating stomatal movement, the key factors in guard cell signal transduction have been intensively investigated by performing forward and reverse genetics approaches. For example, both reactive oxygen species (ROS) and nitric oxide (NO) have been identified as vital intermediates in guard cell ABA signaling (Bright et al., 2006; Yan et al., 2007; Suzuki et al., 2011; Hao et al., 2012). The key ROS-producing enzymes in Arabidopsis (Arabidopsis thaliana) guard cells are the respiratory burst oxidase homologs (Rboh) D and F (Kwak et al., 2003; Bright et al., 2006; Mazars et al., 2010; Marino et al., 2012). Current available data suggest that there are at least two distinct pathways responsible for NO synthesis involved in ABA signaling in guard cells: the nitrite reductase (NR)- and l-Arg-dependent pathways (Desikan et al., 2002; Besson-Bard et al., 2008). Genetic evidence further demonstrated that removal of the major known sources of either ROS or NO significantly impairs ABA-induced stomatal closure. ABA fails to induce ROS production in the atrbohD/F double mutant (Kwak et al., 2003; Wang et al., 2012) and NO synthesis in the NR-deficient mutant nitrate reductase1/2 (nia1/2; Bright et al., 2006; Neill et al., 2008), both of which lead to impaired stomatal closure in Arabidopsis. Most importantly, ROS and NO, which function both synergistically and independently, have been established as ubiquitous signal transduction components to control a diverse range of physiological pathways in higher plants (Bright et al., 2006; Tossi et al., 2012).The guard cell outward-rectifying K+ channel (GORK) encodes the exclusive voltage-gated outwardly rectifying K+ channel protein, which was located in the guard cell membrane (Ache et al., 2000; Dreyer and Blatt, 2009). Expression profiles revealed that this gene is up-regulated upon the onset of drought, salinity, and cold stress and ABA exposure (Becker et al., 2003; Tran et al., 2013). Reverse genetic evidence further showed that GORK plays an important role in the control of stomatal movements and allows the plant to reduce transpirational water loss significantly (Hosy et al., 2003) and participates in the regulation of salinity tolerance by preventing salt-induced K+ loss (Jayakannan et al., 2013). Due to the high complexity of guard cell signaling cascades, whether and how ABA-triggered GORK up-regulation is attributed to the generation of cellular secondary messengers, such as ROS and NO, is less clear.Hydrogen gas (H2) was recently revealed as a signaling modulator with multiple biological functions in clinical trails (Ohsawa et al., 2007; Itoh et al., 2009; Ito et al., 2012). It was previously found that a hydrogenase system could generate H2 in bacteria and green algae (Meyer, 2007; Esquível et al., 2011). Although some earlier studies discovered the evolution of H2 in several higher plant species (Renwick et al., 1964; Torres et al., 1984), it was also proposed that the eukaryotic hydrogenase-like protein does not metabolize H2 (Cavazza et al., 2008; Mondy et al., 2014). Since the explosion limit of H2 gas is about 4% to 72.4% (v/v, in the air), the direct application of H2 gas in experiments is flammable and dangerous. Regardless of these problems to be resolved, the methodology, such as using exogenous hydrogen-rich water (HRW) or hydrogen-rich saline, which is safe, economical, and easily available, provides a valuable approach to investigate the physiological function of H2 in animal research and clinical trials. For example, hydrogen dissolved in Dulbecco’s modified Eagle’s medium was found to react with cytotoxic ROS and thus protect against oxidative damage in PC12 cells and rats (Ohsawa et al., 2007). The neuroprotective effect of H2-loaded eye drops on retinal ischemia-reperfusion injury was also reported (Oharazawa et al., 2010). In plants, corresponding results by using HRW combined with gas chromatography (GC) revealed that H2 could act as a novel beneficial gaseous molecule in plant responses against salinity (Xie et al., 2012; Xu et al., 2013), cadmium stress (Cui et al., 2013), and paraquat toxicity (Jin et al., 2013). More recently, the observation that HRW could delay the postharvest ripening and senescence of kiwifruit (Actinidia deliciosa) was reported (Hu et al., 2014).Considering the fact that the signaling cascades for salt, osmotic, and drought stresses share a common cascade in an ABA-dependent pathway, it would be noteworthy to identify whether and how H2 regulates the bioactivity of ABA-induced downstream components and, thereafter, biological responses, including stomatal closure and drought tolerance. To resolve these scientific questions, rbohD, rbohF, nia1/2, nitric oxide associated1 (noa1; Van Ree et al., 2011), nia1/2/noa1, and gork mutants were utilized to investigate the relationship among H2, ROS, NO, and GORK in the guard cell signal transduction network. By the combination of pharmacological and biochemical analyses with this genetics-based approach, we provide comprehensive evidence to show that H2 might be a newly identified bioeffective modulator involved in ABA signaling responsible for drought tolerance, that HRW-promoted stomatal closure was mainly attributed to the modulation of ROS-dependent NO generation, and that GORK might be the downstream target protein of H2 signaling.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号