首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Botrytis cinerea and Sclerotinia sclerotiorum secrete oxalic acid as a pathogenicity factor with a broad action. Consequently, it should be possible to interfere with the infection process by degrading oxalic acid during the interaction of these pathogens with their hosts. We have evaluated the potential of oxalate-degrading bacteria to protect plants against pathogenic fungi. Such bacteria were isolated from agricultural soil and selected on agar plates with Ca-oxalate as the sole carbon source. Four strains were retained with a medium-to-strong protective activity on Arabidopsis thaliana leaves against B. cinerea and S. sclerotiorum. They can provide 30 to 70% protection against fungal infection in different pathosystems, including B. cinerea on A. thaliana, cucumber, grapevine, and tomato. The oxalate-degrading bacteria induced only some marker genes for common plant signaling pathways for defenses, but protective effects were slightly reduced in A. thaliana mutants impaired in the ethylene and jasmonic acid signaling pathways. More detailed studies on the protective mechanism were performed in ox-strain B, identified as Cupriavidus campinensis, by analysis of transposon-tagged mutants that have a reduced ability to degrade oxalic acid.  相似文献   

2.
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel bioactivities. One such area of ongoing research is the discovery of compounds that interfere with the cell–cell signalling process called quorum sensing (QS). Described as the next generation of antimicrobials, these compounds can target virulence and persistence of clinically relevant pathogens, independent of any growth-limiting effects. Marine sponges are a rich source of microbial diversity, with dynamic populations in a symbiotic relationship. In this study, we have harnessed the QS inhibition (QSI) potential of marine sponge microbiota and through culture-based discovery have uncovered small molecule signal mimics that neutralize virulence phenotypes in clinical pathogens. This study describes for the first time a marine sponge Psychrobacter sp. isolate B98C22 that blocks QS signalling, while also reporting dual QS/QSI activity in the Pseudoalteromonas sp. J10 and ParacoccusJM45. Isolation of novel QSI activities has significant potential for future therapeutic development, of particular relevance in the light of the pending perfect storm of antibiotic resistance meeting antibiotic drug discovery decline.  相似文献   

3.
刘增亮  汪茜  宋娟  周双云  车江旅  陈廷速 《菌物学报》2019,38(11):1958-1964
为筛选得到优良植物病害生防菌,对广西生姜Zingiber officinale种植区健康生姜根系和叶片中的共生真菌进行了组织分离,以生姜茎腐病菌群结腐霉Pythium myriotylum和香蕉枯萎病菌尖孢镰刀菌古巴专化型4号生理小种Fusarium oxysporum f. sp. cubense race 4为指示菌,通过平板对峙培养法和发酵液菌落直径法试验进行筛选评价,并结合形态学观察及ITS序列分析对筛选出的生防效果最好的共生真菌进行了鉴定。结果表明,从生姜植株共分离得到34株共生真菌,其中根系分离22株,叶片分离12株;对峙培养发现有6株共生真菌对生姜茎腐病菌和香蕉枯萎病菌均有抑制作用;其中菌株SBM-11拮抗作用最强,对生姜茎腐病菌抑制率达到93%,对香蕉枯萎病菌抑制率达到82%;SBM-11的发酵液对生姜茎腐病菌和香蕉枯萎病菌抑制率分别为82%、73%,与其他菌株发酵液抑制效果相比差异明显;结合形态和分子鉴定结果表明SBM-11菌株为绿色木霉Trichoderma viride,极具生防潜力。  相似文献   

4.
To evaluate the potential probiotic effect of two bacterial strains towards Artemia cultured in different gnotobiotic conditions, challenge tests were performed with a virulent Vibrio campbellii or with an opportunistic Vibrio proteolyticus strain. For that purpose, three feed sources (different isogenic Saccharomyces cerevisiae mutant strains) were chosen, yielding distinct Artemia culture performances. Both bacterial strains, selected from previous well-performing Artemia cultures, were able to protect against the opportunistic V. proteolyticus, while, generally, these bacteria could not protect Artemia against V. campbellii. The quality of the feed provided (in the form of the isogenic mnn9 yeast mutant) to Artemia had a stronger influence on nauplii protection against the opportunistic and the virulent Vibrio than the addition of beneficial bacteria. This feed has a higher nutritional value for Artemia, but contains also more cell wall bound β-glucans and chitin. Data suggest that the change in the cell wall composition, rather than the overall better nutritional value, of the mnn9 strain is responsible for the protection against both Vibrios.  相似文献   

5.
Most plants co-exist with fungal and bacterial endophytes. Generally, endophytes are beneficial microorganisms that colonize the internal tissues of their host plants. Plants derive several advantages from endophytic colonization, such as the biocontrol of phytopathogens and growth-promoting factors. In this review, we discuss the current knowledge of endophytic bacteria and their potential as natural biocontrol agents for plants.  相似文献   

6.
Nonpathogenic (avirulent), or low virulent (hypovirulent) strains are capable of colonizing infection site niches on the plants' surfaces and protecting susceptible plants against their respective pathogens. Such phenomena have been demonstrated for a considerable number of plant pathogens. The modes of protection differ among the nonpathogenic strains, and one strain can protect by more than one mechanism. Competition for infection sites, or for nutrients (such as carbon, iron) as well as induction of the host plant resistance, have been demonstrated for several pathogens such as Rhizoctonia spp., Fusarium spp. and Pythium spp. Mycoparasitism was shown for Pythium spp. Transmission of double stranded RNA mycoviruses from hypovirulent strains to virulent strains renders the virulent strains hypovirulent. Chestnut trees infected with the chestnut blight pathogen, Cryphonectria (Endothia) parasitica, recovered after inoculation with transmissible hypovirulent strains. Nonpathogenic strains of various fungi are potential candidates for development of biocontrol preparations. Some strains are already used in Agriculture.  相似文献   

7.
Plant diseases have a significant impact on the yield and quality of crops. Many strategies have been developed to combat plant diseases, including the transfer of resistance genes to crops by conventional breeding. However, resistance genes can only be introgressed from sexually-compatible species, so breeders need alternative measures to introduce resistance traits from more distant sources. In this context, genetic engineering provides an opportunity to exploit diverse and novel forms of resistance, e.g. the use of recombinant antibodies targeting plant pathogens. Native antibodies, as a part of the vertebrate adaptive immune system, can bind to foreign antigens and eliminate them from the body. The ectopic expression of antibodies in plants can also interfere with pathogen activity to confer disease resistance. With sufficient knowledge of the pathogen life cycle, it is possible to counter any disease by designing expression constructs so that pathogen-specific antibodies accumulate at high levels in appropriate sub-cellular compartments. Although first developed to tackle plant viruses and still used predominantly for this purpose, antibodies have been targeted against a diverse range of pathogens as well as proteins involved in plant–pathogen interactions. Here we comprehensively review the development and implementation of antibody-mediated disease resistance in plants.  相似文献   

8.
Aphids, including the peach-potato aphid, Myzus persicae, are major insect pests of agriculture and horticulture, and aphid control measures are limited. There is therefore an urgent need to develop alternative and more sustainable means of control. Recent studies have shown that environmental microbes have varying abilities to kill insects. We screened a range of environmental bacteria isolates for their abilities to kill target aphid species. Tests demonstrated the killing aptitude of these bacteria against six aphid genera (including Myzus persicae). No single bacterial strain was identified that was consistently toxic to insecticide-resistant aphid clones than susceptible clones, suggesting resistance to chemicals is not strongly correlated with bacterial challenge. Pseudomonas fluorescens PpR24 proved the most toxic to almost all aphid clones whilst exhibiting the ability to survive for over three weeks on three plant species at populations of 5–6 log CFU cm−2 leaf. Application of PpR24 to plants immediately prior to introducing aphids onto the plants led to a 68%, 57% and 69% reduction in aphid populations, after 21 days, on Capsicum annuum, Arabidopsis thaliana and Beta vulgaris respectively. Together, these findings provide new insights into aphid susceptibility to bacterial infection with the aim of utilizing bacteria as effective biocontrol agents.  相似文献   

9.
The effect of animal myeloperoxidase (EC 1.11.1.7) on the viability of a plant pathogen was determined. Lethality of hydrogen peroxide to germinating spores of Aspergillus flavus increased 90-fold enzymically. Singlet oxygen was present but hypochlorite accounted for two-thirds of the increase. The results indicate myeloperoxidase could improve microbial resistance in plants, perhaps transgenically.  相似文献   

10.
Wood ants use resin to protect themselves against pathogens   总被引:2,自引:0,他引:2  
Social life is generally associated with an increased exposure to pathogens and parasites, due to factors such as high population density, frequent physical contact and the use of perennial nest sites. However, sociality also permits the evolution of new collective behavioural defences. Wood ants, Formica paralugubris, commonly bring back pieces of solidified coniferous resin to their nest. Many birds and a few mammals also incorporate green plant material into their nests. Collecting plant material rich in volatile compounds might be an efficient way to fight bacteria and fungi. However, no study has demonstrated that this behaviour has a positive effect on survival. Here, we provide the first experimental evidence that animals using plant compounds with antibacterial and antifungal properties survive better when exposed to detrimental micro-organisms. The presence of resin strongly improves the survival of F. paralugubris adults and larvae exposed to the bacteria Pseudomonas fluorescens, and the survival of larvae exposed to the entomopathogenic fungus Metarhizium anisopliae. These results show that wood ants capitalize on the chemical defences which have evolved in plants to collectively protect themselves against pathogens.  相似文献   

11.
Here we review the mechanisms that bacterial cells use to protect themselves against channel-forming colicins. Four mechanisms are examined: immunity, resistance, tolerance and PacB character. Immunity confers protection to colicinogenic cells against the colicin they produce, since the colicinogenic plasmid bears the genetic determinant for such immunity protein. Resistance is provided by modifications on colicin receptors located on the outer membrane. It prevents colicin adsorption and protects against those colicins sharing a common receptor. Tolerance is achieved by changes in the translocation system. The adsorbed colicin is not translocated toward the periplasmic space. This impedes its insertion into the cell membrane as well as the formation of the transmembrane channel. Tolerance confers protection against colicins that share the same translocation system. Finally, we discuss the PacB character, that confers protection against all known channel-forming colicins. The latter property is encoded by non-colicinogenic plasmids in the H-incompatibility complex.  相似文献   

12.
Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants.We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.  相似文献   

13.
Huang  Kailong  Mao  Yanping  Zhao  Fuzheng  Zhang  Xu-Xiang  Ju  Feng  Ye  Lin  Wang  Yulin  Li  Bing  Ren  Hongqiang  Zhang  Tong 《Applied microbiology and biotechnology》2018,102(5):2455-2464
Applied Microbiology and Biotechnology - To comprehensively understand the profile of free-living bacteria and potential bacterial pathogens in sewage treatment plants (STPs), this study applied...  相似文献   

14.
Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss-of-function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild-type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down-regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine-tuning plant metal homeostasis.  相似文献   

15.
Plant natriuretic peptides (PNPs) have been implicated in the regulation of ions and water homeostasis, and their participation in the plant immune response has also been proposed. Xanthomonas citri ssp. citri contains a gene encoding a PNP‐like protein (XacPNP) which has no homologues in other bacteria. XacPNP mimics its Arabidopsis thaliana homologue AtPNP‐A by modifying host responses to create favourable conditions for pathogen survival. However, the ability of XacPNP to induce plant defence responses has not been investigated. In order to study further the role of XacPNP in vivo, A. thaliana lines over‐expressing XacPNP, lines over‐expressing AtPNP‐A and AtPNP‐A‐deficient plants were generated. Plants over‐expressing XacPNP or AtPNP‐A showed larger stomatal aperture and were more resistant to saline or oxidative stress than were PNP‐deficient lines. In order to study further the role of PNP in biotic stress responses, A. thaliana leaves were infiltrated with pure recombinant XacPNP, and showed enhanced expression of genes related to the defence response and a higher resistance to pathogen infections. Moreover, AtPNP‐A expression increased in A. thaliana on Pseudomonas syringae pv. tomato (Pst) infection. This evidence led us to analyse the responses of the transgenic plants to pathogens. Plants over‐expressing XacPNP or AtPNP‐A were more resistant to Pst infection than control plants, whereas PNP‐deficient plants were more susceptible and showed a stronger hypersensitive response when challenged with non‐host bacteria. Therefore, XacPNP, acquired by horizontal gene transfer, is able to mimic PNP functions, even with an increase in plant defence responses.  相似文献   

16.
Spines protect plants against browsing by small climbing mammals   总被引:1,自引:0,他引:1  
The presence of spines on woody plants has been shown to limit the loss of foliage to large mammalian browsers by restricting both bite size and biting rate. We tested the hypothesis that plant spines are also an effective defense against browsing by small mammals, such as rodents, that climb within the canopy of shrubs to harvest fruits, seeds, and foliage. Tame southern plains woodrats (Neotoma micropus) were allowed to harvest raisins impaled on the branches of blackbrush shrubs (Acacia rigidula Benth.) in five categories of spinescence: naturally spineless, moderately spiny, or very spiny branches, and moderately spiny and very spiny branches with the spines removed. Plant spinescence significantly reduced the woodrats foraging efficiency (P = 0.0001). Although plant spines are generally thought to be an evolved defense against browsing by ungulate herbivores, they may also reduce browsing by small mammals. Received: 15 May 1997 / Accepted: 29 August 1997  相似文献   

17.
18.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

19.

The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens. GE does not require crossings, hence avoiding the introduction of undesirable traits through linkage in elite varieties, speeding up the whole breeding process. Additionally, GE technologies can improve plant protection by directly targeting plant susceptibility (S) genes or virulence factors of pests and pathogens, either through the direct edition of the pest genome or by adding the GE machinery to the plant genome or to microorganisms functioning as biocontrol agents (BCAs). Over the years, GE technology has been continuously evolving and more so with the development of CRISPR/Cas. Here we review the latest advancements of GE to improve plant protection, focusing on CRISPR/Cas-based genome edition of crops and pests and pathogens. We discuss how other technologies, such as host-induced gene silencing (HIGS) and the use of BCAs could benefit from CRISPR/Cas to accelerate the development of green strategies to promote a sustainable agriculture in the future.

  相似文献   

20.
This paper illustrates the characteristics of plant pathogens that have been found to be of most relevance in offensive biological warfare programmes. It shows how states envisaged these pathogens might be used against crops. It assesses whether the Biological and Toxin Weapons Convention can deal adequately with this potential threat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号