首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis, which is the fundamental basis for cardiovascular diseases in the global world, is driven by multiple roles of the immune system in the circulation and vascular plaque. Recent studies demonstrated that T-cell infiltrates into aorta plaque and plays an important role in recruiting macrophages to the vascular wall. Here, using single-cell sequencing, we found T cells in patients’ plaques and differentially expressed genes (DEGs) of T cells in atherosclerosis mice. T cells and macrophages were continuously activated in atherosclerotic plaque in patients. Besides, other immune cells also take part in atherogenesis, such as natural killer (NK) cells, granulocytes. Interferon (IFN)/NFκB signaling, the AKT signaling pathway was highly activated in mouse (in vivo) and cell line (in vitro). TCF7 and XCL1 were regulated by AKT and NFκB, respectively through protein–protein network analysis. Therefore, we attempt to clarify and discover potential genes and new mechanisms associated with atherosclerosis for drug development.  相似文献   

2.
3.
Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow–derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C–mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow–derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.  相似文献   

4.
5.
6.
7.
8.
Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially “rescued” the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation.  相似文献   

9.
Direct associations between hyperglycemia and atherosclerosis remain unclear. We investigated the association between the amelioration of glycemia by sodium-glucose cotransporter 2 inhibitors (SGLT2is) and macrophage-driven atherosclerosis in diabetic mice. We administered dapagliflozin or ipragliflozin (1.0 mg/kg/day) for 4-weeks to apolipoprotein E-null (Apoe −/−) mice, streptozotocin-induced diabetic Apoe −/− mice, and diabetic db/db mice. We then determined aortic atherosclerosis, oxidized low-density lipoprotein (LDL)-induced foam cell formation, and related gene expression in exudate peritoneal macrophages. Dapagliflozin substantially decreased glycated hemoglobin (HbA1c) and glucose tolerance without affecting body weight, blood pressure, plasma insulin, and lipids in diabetic Apoe −/− mice. Aortic atherosclerotic lesions, atheromatous plaque size, and macrophage infiltration in the aortic root increased in diabetic Apoe −/− mice; dapagliflozin attenuated these changes by 33%, 27%, and 20%, respectively. Atherosclerotic lesions or foam cell formation highly correlated with HbA1c. Dapagliflozin did not affect atherosclerosis or plasma parameters in non-diabetic Apoe −/− mice. In db/db mice, foam cell formation increased by 4-fold compared with C57/BL6 mice, whereas ipragliflozin decreased it by 31%. Foam cell formation exhibited a strong correlation with HbA1c. Gene expression of lectin-like ox-LDL receptor-1 and acyl-coenzyme A:cholesterol acyltransferase 1 was upregulated, whereas that of ATP-binding cassette transporter A1 was downregulated in the peritoneal macrophages of both types of diabetic mice. SGLT2i normalized these gene expressions. Our study is the first to demonstrate that SGLT2i exerts anti-atherogenic effects by pure glucose lowering independent of insulin action in diabetic mice through suppressing macrophage foam cell formation, suggesting that foam cell formation is highly sensitive to glycemia ex vivo.  相似文献   

10.
Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in enterocyte differentiation.  相似文献   

11.
12.
Although Wnt signaling is considered a key regulatory pathway for bone formation, inactivation of β-catenin in osteoblasts does not affect their activity but rather causes increased osteoclastogenesis due to insufficient production of osteoprotegerin (Opg). By monitoring the expression pattern of all known genes encoding Wnt receptors in mouse tissues and bone cells we identified Frizzled 8 (Fzd8) as a candidate regulator of bone remodeling. Fzd8-deficient mice displayed osteopenia with normal bone formation and increased osteoclastogenesis, but this phenotype was not associated with impaired Wnt signaling or Opg production by osteoblasts. The deduced direct negative influence of canonical Wnt signaling on osteoclastogenesis was confirmed in vitro and through the generation of mice lacking β-catenin in the osteoclast lineage. Here, we observed increased bone resorption despite normal Opg production and a resistance to the anti-osteoclastogenic effect of Wnt3a. These results demonstrate that Fzd8 and β-catenin negatively regulate osteoclast differentiation independent of osteoblasts and that canonical Wnt signaling controls bone resorption by two different mechanisms.  相似文献   

13.
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号