首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations (??promiscuous?? domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages.

Results

Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements (??cassettes??). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii.

Conclusion

Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms.  相似文献   

2.
Modularity is a hallmark of molecular evolution. Whether considering gene regulation, the components of metabolic pathways or signaling cascades, the ability to reuse autonomous modules in different molecular contexts can expedite evolutionary innovation. Similarly, protein domains are the modules of proteins, and modular domain rearrangements can create diversity with seemingly few operations in turn allowing for swift changes to an organism's functional repertoire. Here, we assess the patterns and functional effects of modular rearrangements at high resolution. Using a well resolved and diverse group of pancrustaceans, we illustrate arrangement diversity within closely related organisms, estimate arrangement turnover frequency and establish, for the first time, branch-specific rate estimates for fusion, fission, domain addition and terminal loss. Our results show that roughly 16 new arrangements arise per million years and that between 64% and 81% of these can be explained by simple, single-step modular rearrangement events. We find evidence that the frequencies of fission and terminal deletion events increase over time, and that modular rearrangements impact all levels of the cellular signaling apparatus and thus may have strong adaptive potential. Novel arrangements that cannot be explained by simple modular rearrangements contain a significant amount of repeat domains that occur in complex patterns which we term “supra-repeats”. Furthermore, these arrangements are significantly longer than those with a single-step rearrangement solution, suggesting that such arrangements may result from multi-step events. In summary, our analysis provides an integrated view and initial quantification of the patterns and functional impact of modular protein evolution in a well resolved phylogenetic tree. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

3.
Protein domains represent the basic evolutionary units that form proteins. Domain duplication and shuffling by recombination are probably the most important forces driving protein evolution and hence the complexity of the proteome. While the duplication of whole genes as well as domain-encoding exons increases the abundance of domains in the proteome, domain shuffling increases versatility, i.e. the number of distinct contexts in which a domain can occur. Here, we describe a comprehensive, genome-wide analysis of the relationship between these two processes. We observe a strong and robust correlation between domain versatility and abundance: domains that occur more often also have many different combination partners. This supports the view that domain recombination occurs in a random way. However, we do not observe all the different combinations that are expected from a simple random recombination scenario, and this is due to frequent duplication of specific domain combinations. When we simulate the evolution of the protein repertoire considering stochastic recombination of domains followed by extensive duplication of the combinations, we approximate the observed data well. Our analyses are consistent with a stochastic process that governs domain recombination and thus protein divergence with respect to domains within a polypeptide chain. At the same time, they support a scenario in which domain combinations are formed only once during the evolution of the protein repertoire, and are then duplicated to various extents. The extent of duplication of different combinations varies widely and, in nature, will depend on selection for the domain combination based on its function. Some of the pair-wise domain combinations that are highly duplicated also recur frequently with other partner domains, and thus represent evolutionary units larger than single protein domains, which we term "supra-domains".  相似文献   

4.
5.
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.  相似文献   

6.
Although the possibility of gene evolution by domain rearrangements has long been appreciated, current methods for reconstructing and systematically analyzing gene family evolution are limited to events such as duplication, loss, and sometimes, horizontal transfer. However, within the Drosophila clade, we find domain rearrangements occur in 35.9% of gene families, and thus, any comprehensive study of gene evolution in these species will need to account for such events. Here, we present a new computational model and algorithm for reconstructing gene evolution at the domain level. We develop a method for detecting homologous domains between genes and present a phylogenetic algorithm for reconstructing maximum parsimony evolutionary histories that include domain generation, duplication, loss, merge (fusion), and split (fission) events. Using this method, we find that genes involved in fusion and fission are enriched in signaling and development, suggesting that domain rearrangements and reuse may be crucial in these processes. We also find that fusion is more abundant than fission, and that fusion and fission events occur predominantly alongside duplication, with 92.5% and 34.3% of fusion and fission events retaining ancestral architectures in the duplicated copies. We provide a catalog of ~9,000 genes that undergo domain rearrangement across nine sequenced species, along with possible mechanisms for their formation. These results dramatically expand on evolution at the subgene level and offer several insights into how new genes and functions arise between species.  相似文献   

7.
MOTIVATION: The structural interaction of proteins and their domains in networks is one of the most basic molecular mechanisms for biological cells. Topological analysis of such networks can provide an understanding of and solutions for predicting properties of proteins and their evolution in terms of domains. A single paradigm for the analysis of interactions at different layers, such as domain and protein layers, is needed. RESULTS: Applying a colored vertex graph model, we integrated two basic interaction layers under a unified model: (1) structural domains and (2) their protein/complex networks. We identified four basic and distinct elements in the model that explains protein interactions at the domain level. We searched for motifs in the networks to detect their topological characteristics using a pruning strategy and a hash table for rapid detection. We obtained the following results: first, compared with a random distribution, a substantial part of the protein interactions could be explained by domain-level structural interaction information. Second, there were distinct kinds of protein interaction patterns classified by specific and distinguishable numbers of domains. The intermolecular domain interaction was the most dominant protein interaction pattern. Third, despite the coverage of the protein interaction information differing among species, the similarity of their networks indicated shared architectures of protein interaction network in living organisms. Remarkably, there were only a few basic architectures in the model (>10 for a 4-node network topology), and we propose that most biological combinations of domains into proteins and complexes can be explained by a small number of key topological motifs. CONTACT: doheon@kaist.ac.kr.  相似文献   

8.
Most eukaryotic proteins are multi-domain proteins that are created from fusions of genes, deletions and internal repetitions. An investigation of such evolutionary events requires a method to find the domain architecture from which each protein originates. Therefore, we defined a novel measure, domain distance, which is calculated as the number of domains that differ between two domain architectures. Using this measure the evolutionary events that distinguish a protein from its closest ancestor have been studied and it was found that indels are more common than internal repetition and that the exchange of a domain is rare. Indels and repetitions are common at both the N and C-terminals while they are rare between domains. The evolution of the majority of multi-domain proteins can be explained by the stepwise insertions of single domains, with the exception of repeats that sometimes are duplicated several domains in tandem. We show that domain distances agree with sequence similarity and semantic similarity based on gene ontology annotations. In addition, we demonstrate the use of the domain distance measure to build evolutionary trees. Finally, the evolution of multi-domain proteins is exemplified by a closer study of the evolution of two protein families, non-receptor tyrosine kinases and RhoGEFs.  相似文献   

9.
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease that shows minimal response to chemotherapy. Genetic changes involved in the progression of PDAC concern genes that encode proteins related to signal transduction networks. This fact reveals the importance in identifying the role and the relations between multiple signaling cascades in PDAC. One of the major factors that modulate signaling events is multidomain scaffold proteins that function by binding several proteins simultaneously, inducing their proximity and influencing the outcome of signaling. A particular group among them, containing multiple Src homology 3 (SH3) domains that can bind proteins containing proline-rich motifs, was associated to different aspects of cancer cell homeostasis. In this work, using a microarray-based analysis, we have shown that 13 multiple SH3 domain containing scaffold proteins are expressed in PDAC cells. Using a yeast two-hybrid approach, we have identified proteins that interact with these adaptor proteins. Among them we have found several molecules that modulate cell proliferation and survival (CIZ1, BIRC6, RBBP6), signaling (LTBP4, Notch2, TOM1L1, STK24) and membrane dynamics (PLSCR1, DDEF2, VCP). Our results indicate that interactions mediated by multi-SH3 domain-containing proteins could lead to the formation of dynamic protein complexes that function in pancreatic cancer cell signaling. The identification of such protein complexes is of paramount importance in deciphering pancreatic cancer biology and designing novel therapeutic approaches.  相似文献   

10.
11.
12.
Adaptor proteins are composed exclusively of domains and motifs that mediate molecular interactions, and can thereby link signaling proteins such as activated cell-surface receptors to downstream effectors. Recent data supports the notion that adaptors are not simply coupling devices that hard-wire successive components of signaling pathways. Rather, they display highly dynamic properties that direct the flow of information through signaling networks. The binding activity of adaptors can be regulated by conformational reorganization, and by the cooperative association of domains within the same adaptor. Furthermore, an individual adaptor can deliver different outputs by utilizing distinct combinations of binding partners. Adaptors can also control the oligomerization of receptor signaling complexes, and the subcellular location and duration of signaling events, and act as coincidence detectors to enhance specificity in cellular responses.  相似文献   

13.
The caspase recruitment domain (CARD) is a protein-binding module that mediates the assembly of CARD-containing proteins into apoptosis and NF-kappaB signaling complexes. We report here that CARD protein 11 (CARD11) and CARD protein 14 (CARD14) are novel CARD-containing proteins that belong to the membrane-associated guanylate kinase (MAGUK) family, a class of proteins that functions as molecular scaffolds for the assembly of multiprotein complexes at specialized regions of the plasma membrane. CARD11 and CARD14 have homologous structures consisting of an N-terminal CARD domain, a central coiled-coil domain, and a C-terminal tripartite domain comprised of a PDZ domain, an Src homology 3 domain, and a GUK domain with homology to guanylate kinase. The CARD domains of both CARD11 and CARD14 associate specifically with the CARD domain of BCL10, a signaling protein that activates NF-kappaB through the IkappaB kinase complex in response to upstream stimuli. When expressed in cells, CARD11 and CARD14 activate NF-kappaB and induce the phosphorylation of BCL10. These findings suggest that CARD11 and CARD14 are novel MAGUK family members that function as upstream activators of BCL10 and NF-kappaB signaling.  相似文献   

14.
Two previously undetected domains were identified in a variety of RNA-binding proteins, particularly RNA-modifying enzymes, using methods for sequence profile analysis. A small domain consisting of 60–65 amino acid residues was detected in the ribosomal protein S4, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. Another novel domain, designated PUA domain, after PseudoUridine synthase and Archaeosine transglycosylase, was detected in archaeal and eukaryotic pseudouridine synthases, archaeal archaeosine synthases, a family of predicted ATPases that may be involved in RNA modification, a family of predicted archaeal and bacterial rRNA methylases. Additionally, the PUA domain was detected in a family of eukaryotic proteins that also contain a domain homologous to the translation initiation factor eIF1/SUI1; these proteins may comprise a novel type of translation factors. Unexpectedly, the PUA domain was detected also in bacterial and yeast glutamate kinases; this is compatible with the demonstrated role of these enzymes in the regulation of the expression of other genes. We propose that the S4 domain and the PUA domain bind RNA molecules with complex folded structures, adding to the growing collection of nucleic acid-binding domains associated with DNA and RNA modification enzymes. The evolution of the translation machinery components containing the S4, PUA, and SUI1 domains must have included several events of lateral gene transfer and gene loss as well as lineage-specific domain fusions. Received: 15 May 1998 / Accepted: 20 July 1998  相似文献   

15.
Many signaling and trafficking proteins contain modular domains that bind reversibly to cellular membranes. The structural basis of the intermolecular interactions which mediate these membrane-targeting events remains elusive since protein-membrane complexes are not directly accessible to standard structural biology techniques. Here we report a fast protein-micelle docking methodology that yields three-dimensional model structures of proteins inserted into micelles, revealing energetically favorable orientations, convergent insertion angles, and an array of protein-lipid interactions at atomic resolution. The method is applied to two peripheral membrane proteins, the early endosome antigen 1 (EEA1) FYVE (a zinc finger domain found in the proteins Fab1, YOTB/ZK632.12, Vac1, and EEA1) and Vam7p phagocyte oxidase homology domains, which are revealed to form extensive networks of interactions with multiple phospholipid headgroups and acyl chains. The resulting structural models explain extensive published mutagenesis data and reveal novel binding determinants. The docking restraints used here were based on NMR data, but can be derived from any technique that detects insertion of protein residues into a membrane, and can be applied to virtually any peripheral membrane protein or membrane-like structure.  相似文献   

16.
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.  相似文献   

17.
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.  相似文献   

18.
Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein-protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein-protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein-protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein-protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein-protein interactions in a dynamic context- and phosphorylation site-specific manner.  相似文献   

19.
20.
Non-synonymous single nucleotide polymorphisms (nsSNPs) are known to alter protein function, contributing to disease susceptibility. This report explores the nature of nsSNPs in the gene products of the highly conserved mitogen-activated protein kinase (MAPK) signaling pathways already implicated in cancer development. MAPK signaling pathways regulate cellular processes such as proliferation, differentiation, apoptosis, and survival mediated through interconnected signaling cascades. Using the dbSNP database, we have identified 25 nsSNPs in 17 out of 98 MAPK genes studied. Computational algorithms were used to predict whether the amino acid substitutions were evolutionarily tolerated, or affected putative functional units such as phosphorylation sites, protein motifs and domains. This study predicts that 36% of nsSNPs are likely to have functional consequences, based on evolutionary conservation analysis, and 36% based on phosphorylation prediction analysis. All such nsSNPs represent potentially functional and disease-causing/modifying alleles. More interestingly, the epistatic relationships discussed in this report represent potential synergistic/ antagonistic/additive effects of nsSNP combinations found within the same protein, or within members of the same protein complex and cascades. This strategy can effectively determine which nsSNPs potentially alter protein function, and can be utilized to study the genetic architecture and disease association of other biological protein complexes and networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号