首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

QTLs controlling yield-related traits were mapped using a population derived from common wheat and Tibetan semi-wild wheat and they provided valuable information for using Tibetan semi-wild wheat in future wheat molecular breeding.

Abstract

Tibetan semi-wild wheat (Triticum aestivum ssp tibetanum Shao) is a kind of primitive hexaploid wheat and harbors several beneficial traits, such as tolerance to biotic and abiotic stresses. And as a wild relative of common wheat, heterosis of yield of the progeny between them was significant. This study focused on mapping QTLs controlling yield-related traits using a recombined inbred lines (RILs) population derived from a hybrid between a common wheat line NongDa3331 (ND3331) and the Tibetan semi-wild wheat accession Zang 1817. In nine location–year environments, a total of 148 putative QTLs controlling nine traits were detected, distributed on 19 chromosomes except for 1A and 2D. Single QTL explained the phenotypic variation ranging from 3.12 to 49.95 %. Of these QTLs, 56 were contributed by Zang 1817. Some stable QTLs contributed by Zang 1817 were also detected in more than four environments, such as QPh-3A1, QPh-4B1 and QPh-4D for plant height, QSl-7A1 for spike length, QEp-4B2 for ears per plant, QGws-4D for grain weight per spike, and QTgw-4D for thousand grain weight. Several QTL-rich Regions were also identified, especially on the homoeologous group 4. The TaANT gene involved in floral organ development was mapped on chromosome 4A between Xksm71 and Xcfd6 with 0.8 cM interval, and co-segregated with the QTLs controlling floret number per spikelet, explaining 4.96–11.84 % of the phenotypic variation. The current study broadens our understanding of the genetic characterization of Tibetan semi-wild wheat, which will enlarge the genetic diversity of yield-related traits in modern wheat breeding program.  相似文献   

2.
Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.  相似文献   

3.

Key message

QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat.

Abstract

This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3–68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.
  相似文献   

4.

Key message

Development of a high-density SNP map and evaluation of QTL shed light on domestication events in tetraploid wheat and the potential utility of cultivated emmer wheat for durum wheat improvement.

Abstract

Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered as one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these and other agronomic traits occurred that led to the formation of today’s fully domesticated durum wheat (T. turgidum ssp. durum). Here, we evaluated a population of recombinant inbred lines (RILs) derived from a cross between a cultivated emmer accession and a durum wheat variety. A high-density single nucleotide polymorphism (SNP)-based genetic linkage map consisting of 2,593 markers was developed for the identification of quantitative trait loci. The major domestication gene Q had profound effects on spike length and compactness, rachis fragility, and threshability as expected. The cultivated emmer parent contributed increased spikelets per spike, and the durum parent contributed higher kernel weight, which led to the identification of some RILs that had significantly higher grain weight per spike than either parent. Threshability was governed not only by the Q locus, but other loci as well including Tg-B1 on chromosome 2B and a putative Tg-A1 locus on chromosome 2A indicating that mutations in the Tg loci occurred during the transition of cultivated emmer to the fully domesticated tetraploid. These results not only shed light on the events that shaped wheat domestication, but also demonstrate that cultivated emmer is a useful source of genetic variation for the enhancement of durum varieties.  相似文献   

5.
The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutations to give rise to free-threshing wheat. Here, we evaluated disomic substitution lines involving chromosomes 2A and 2B of wild emmer accessions substituted for homologous chromosomes in tetraploid and hexaploid backgrounds. The results suggested that both chromosomes 2A and 2B of wild emmer possess genes that inhibit threshability. A population of recombinant inbred lines derived from the tetraploid durum wheat variety Langdon crossed with a Langdon — T. turgidum ssp. dicoccoides accession PI 481521 chromosome 2B disomic substitution line was used to develop a genetic linkage map of 2B, evaluate the genetics of threshability, and map the gene derived from PI 481521 that inhibited threshability. A 2BS linkage map comprised of 58 markers was developed, and markers delineated the gene to a 2.3 cM interval. Comparative analysis with maps containing the tenacious glume gene Tg-D1 on chromosome arm 2DS from Aegilops tauschii, the D genome progenitor of hexaploid wheat, revealed that the gene inhibiting threshability in wild emmer was homoeologous to Tg-D1 and therefore designated Tg-B1. Comparative analysis with rice and Brachypodium distachyon indicated a high level of divergence and poorly conserved colinearity, particularly near the Tg-B1 locus. These results provide a foundation for further studies involving Tg-B1, which, together with Tg-D1, had profound influences on wheat domestication.  相似文献   

6.
Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is one of the Chinese endemic hexaploid wheat genetic resources, distributed only in the Qinghai-Xizang Plateau of China. It has special characters, such as a hulled glume and spike disarticulation. However, seed dormancy, another important character for wheat resistance to pre-harvest sprouting, was rarely reported. Seed dormancy of more than 10 Tibetan semi-wild wheat accessions was evaluated, and their germinations were 0% or near 0% with both treatments of threshed seeds and intact spikes at hard dough stage. Tibetan semi-wild wheat accession Q1028 was investigated for its seed dormant characters by testing the seed germination percentages of intact spikes, seeds with bract powder, normal seeds, seeds with pierced coat, and sectioned embryos. It was observed that embryo dormancy of Q1028 accounted for its seed dormancy. Using threshed seeds and intact spikes at hard dough stage, the inheritance of seed dormancy was carried out using the F1, F2, F3 and F2BC1 populations of the cross between Q1028 and a wheat line 88-1643, susceptible to preharvest sprouting. The germinations of seeds and intact spikes in F1 plants were 1.0% and 0.9%, respectively. It indicated that seed dormancy of Q1028 was inherited as a dominant trait. From the genetic analysis of the F2, F3 and F2BC1 populations it was found that the strong seed dormancy of Q1028 was controlled by two dominant genes.  相似文献   

7.
The mature spike rachis of wild emmer [Triticum turgidum L. ssp. dicoccoides (Körn. ex Asch. and Graebner) Thell.] disarticulates spontaneously between each spikelet leading to the dispersion of wedge-type diaspores. By contrast, the spike rachis of domesticated emmer (Triticum turgidum L. ssp. turgidum) fails to disarticulate and remains intact until it is harvested. This major distinguishing feature between wild and domesticated emmer is controlled by two major genes, brittle rachis 2 (Br-A2) and brittle rachis 3 (Br-A3) on the short arms of chromosomes 3A and 3B, respectively. Because of their biological and agricultural importance, a map-based analysis of these genes was undertaken. Using two recombinant inbred chromosome line (RICL) populations, Br-A2, on chromosome 3A, was localized to a ~11-cM region between Xgwm2 and a cluster of linked loci (Xgwm666.1, Xbarc19, Xcfa2164, Xbarc356, and Xgwm674), whereas Br-A3, on chromosome 3B, was localized to a ~24-cM interval between Xbarc218 and Xwmc777. Comparative mapping analyses suggested that both Br-A2 and Br-A3 were present in homoeologous regions on chromosomes 3A and 3B, respectively. Furthermore, Br-A2 and Br-A3 from wheat and Btr1/Btr2 on chromosome 3H of barley (Hordeum vulgare L.) also were homoeologous suggesting that the location of major determinants of the brittle rachis trait in these species has been conserved. On the other hand, brittle rachis loci of wheat and barley, and a shattering locus on rice chromosome 1 did not appear to be orthologous. Linkage and deletion-based bin mapping comparisons suggested that Br-A2 and Br-A3 may reside in chromosomal areas where the estimated frequency of recombination was ~ 4.3 Mb/cM. These estimates indicated that the cloning of Br-A2 and Br-A3 using map-based methods would be extremely challenging.  相似文献   

8.
Domestication of plants and animals is the major factor underlying human civilization and is a gigantic evolutionary experiment of adaptation and speciation, generating incipient species. Wheat is one of the most important grain crops in the world, and consists mainly of two types: the hexaploid bread wheat (Triticum aestivum) accounting for about 95% of world wheat production, and the tetraploid durum wheat (T. durum) accounting for the other 5%. In this review, we summarize and discuss research on wheat domestication, mainly focusing on recent findings in genetics and genomics studies. T. aestivum originated from a cross between domesticated emmer wheat T. dicoccum and the goat grass Aegilops tauschii, most probably in the south and west of the Caspian Sea about 9,000 years ago. Wild emmer wheat has the same genome formula as durum wheat and has contributed two genomes to bread wheat, and is central to wheat domestication. Domestication has genetically not only transformed the brittle rachis, tenacious glume and non-free threshability, but also modified yield and yield components in wheat. Wheat domestication involves a limited number of chromosome regions, or domestication syndrome factors, though many relevant quantitative trait loci have been detected. On completion of the genome sequencing of diploid wild wheat (T. urartu or Ae. tauschii), domestication syndrome factors and other relevant genes could be isolated, and effects of wheat domestication could be determined. The achievements of domestication genetics and robust research programs in Triticeae genomics are of greatly help in conservation and exploitation of wheat germplasm and genetic improvement of wheat cultivars.  相似文献   

9.
The brittle rachis character, which causes spontaneous shattering of spikelets, has an adaptive value in wild grass species. The loci Br1 and Br2 in durum wheat (Triticum durum Desf.) and Br3 in hexaploid wheat (T. aestivum L.) determine disarticulation of rachides above the junction of the rachilla with the rachis such that a fragment of rachis is attached below each spikelet. Using microsatellite markers, the loci Br1, Br2 and Br3 were mapped on the homoeologous group 3 chromosomes. The Br2 locus was located on the short arm of chromosome 3A and linked with the centromeric marker, Xgwm32, at a distance of 13.3 cM. The Br3 locus was located on the short arm of chromosome 3B and linked with the centromeric marker, Xgwm72 (at a distance of 14.2 cM). The Br1 locus was located on the short arm of chromosome 3D. The distance of Br1 from the centromeric marker Xgdm72 was 25.3 cM. Mapping the Br1, Br2 and Br3 loci of the brittle rachis suggests the homoeologous origin of these 3 loci for brittle rachides. Since the genes for brittle rachis have been retained in the gene pool of durum wheat, the more closely linked markers with the brittle rachis locus are required to select against brittle rachis genotypes and then to avoid yield loss in improved cultivars.  相似文献   

10.
Pyramiding of genes that confer partial resistance is a method for developing wheat (Triticum aestivum L.) cultivars with durable resistance to leaf rust caused by Puccinia triticina. In this research, a doubled haploid population derived from the cross between the synthetic hexaploid wheat (SHW) (×Aegilotriticum spp.) line TA4152-60 and the North Dakota breeding line ND495 was used for identifying genes conferring partial resistance to leaf rust in both the adult plant and seedling stages. Five QTLs located on chromosome arms 3AL, 3BL, 4DL, 5BL and 6BL were associated with adult plant resistance with the latter four representing novel leaf rust resistance QTLs. Resistance effects of the 4DL QTL were contributed by ND495 and the effects of the other QTLs were contributed by the SHW line. The QTL on chromosome arm 3AL had large effects and also conferred seedling resistance to leaf rust races MJBJ, TDBG and MFPS. The other major QTL, which was on chromosome arm 3BL, conferred seedling resistance to race MFPS and was involved in a significant interaction with a locus on chromosome arm 5DS. The QTLs and the associated molecular markers identified in this research can be used to develop wheat cultivars with potentially durable leaf rust resistance.  相似文献   

11.
Hessian fly (HF), Mayetiola destructor, is an important pest of wheat (Triticum aestivum L.) worldwide. Because it has multiple biotypes that are virulent to different wheat HF resistance genes, pyramiding multiple resistance genes in a cultivar can improve resistance durability, and finding DNA markers tightly linked to these genes is essential to this process. This study identified quantitative trait loci (QTLs) for Hessian fly resistance (HFR) in the wheat cultivar ‘Clark’ and tightly linked DNA markers for the QTLs. A linkage map was constructed with single nucleotide polymorphism and simple sequence repeat markers using a population of recombinant inbred lines (RILs) derived from the cross ‘Ning7840’ × ‘Clark’ by single-seed descent. Two QTLs associated with resistance to fly biotype GP were identified on chromosomes 6B and 1A, with the resistance alleles contributed from ‘Clark’. The QTL on 6B flanked by loci Xsnp921 and Xsnp2745 explained about 37.2 % of the phenotypic variation, and the QTL on 1A was flanked by Xgwm33 and Xsnp5150 and accounted for 13.3 % of phenotypic variation for HFR. The QTL on 6B has not been reported before and represents a novel wheat gene with resistance to HF, thus, it is designated H34. A significant positive epistasis was detected between the two QTLs that accounted for about 9.5 % of the mean phenotypic variation and increased HFR by 0.16. Our results indicated that different QTLs may contribute different degrees of resistance in a cultivar and that epistasis may play an important role in HFR.  相似文献   

12.
Recombinant inbred lines of the International Triticeae Mapping Initiative (ITMI) mapping population were used to localize genetic loci that affect traits related to the free-threshing habit (percent threshability, glume tenacity, and spike fragility) and to spike morphology (spike length, spikelet number, and spike compactness) of wheat (Triticum aestivum L.). The ITMI population was planted in three environments during 1999 and 2000, and phenotypic and genotypic data were used for composite interval mapping. Two quantitative trait loci (QTL) that consistently affected threshability-associated traits were localized on chromosomes 2D and 5A. Coincident QTL on the short arm of 2D explained 44% of the variation in threshability, 17% of the variation in glume tenacity, and 42% of the variation in rachis fragility. QTL on chromosomes 2D probably represent the effect of Tg, a gene for tenacious glumes. Coincident QTL on the long arm of 5A explained 21% and 10% of the variation in glume tenacity and rachis fragility, respectively. QTL on 5A are believed to represent the effect of Q. Overall, free-threshing-related characteristics were predominantly affected by Tg and to a lesser extent by Q. Other QTL that were significantly associated with threshability-related traits in at least one environment were localized on chromosomes 2A, 2B, 6A, 6D, and 7B. Four QTL on chromosomes 1B, 4A, 6A, and 7A consistently affected spike characteristics. Coincident QTL on the short arm of chromosome 1B explained 18% and 7% of the variation in spike length and spike compactness, respectively. QTL on the long arm of 4A explained 11%, 14%, and 12% of the variation in spike length, spike compactness, and spikelet number, respectively. A QTL on the short arm of 6A explained 27% of the phenotypic variance for spike compactness, while a QTL on the long arm of 7A explained 18% of the variation in spikelet number. QTL on chromosomes 1B and 6A appear to affect spike dimensions by modulating rachis internode length, while QTL on chromosomes 4A and 7A do so by affecting the formation of spikelets. Other QTL that were significantly associated with spike morphology-related traits, in at least one environment, were localized on chromosomes 2B, 3A, 3D, 4D, and 5A.Communicated by J. Dvorak  相似文献   

13.

Background and Aims

The harvesting method of wild and cultivated cereals has long been recognized as an important factor in the emergence of domesticated non-shattering ear genotypes. This study aimed to quantify the effects of spike brittleness and threshability on threshing time and efficiency in emmer wheat, and to evaluate the implications of post-harvest processes on domestication of cereals in the Near East.

Methods

A diverse collection of tetraploid wheat genotypes, consisting of Triticum turgidum ssp. dicoccoides – the wild progenitor of domesticated wheat – traditional landraces, modern cultivars (T. turgidum ssp. durum) and 150 recombinant (wild × modern) inbred lines, was used in replicated controlled threshing experiments to quantify the effects of spike brittleness and threshability on threshing time and efficiency.

Key Results

The transition from a brittle hulled wild phenotype to non-brittle hulled phenotype (landraces) was associated with an approx. 30 % reduction in threshing time, whereas the transition from the latter to non-brittle free-threshing cultivars was associated with an approx. 85 % reduction in threshing time. Similar trends were obtained with groups of recombinant inbred lines showing extreme phenotypes of brittleness and threshability.

Conclusions

In tetraploid wheat, both non-brittle spike and free-threshing are labour-saving traits that increase the efficiency of post-harvest processing, which could have been an incentive for rapid domestication of the Near Eastern cereals, thus refuting the recently proposed hypothesis regarding extra labour associated with the domesticated phenotype (non-brittle spike) and its presumed role in extending the domestication episode time frame.  相似文献   

14.
Head shattering in barley (Hordeum vulgare L.) has two forms; brittle rachis and weak rachis. Brittle rachis is not observed in cultivated barley since all cultivars carry non-brittle alleles at one of the two complementary brittle rachis loci (Btr1;Btr2). Weak rachis causes head shattering in barley cultivars and may be confused with brittle rachis. Brittle rachis has been mapped to the chromosome 3 (3H) short arm while map position(s) of the weak rachis is unknown. Two major and a putative minor QTL for head shattering were mapped using the Steptoe × Morex doubled haploid line population. The largest QTL, designated Hst-3, located on the chromosome 3 (3H) centromeric region, is associated with a major yield QTL. The Steptoe Hst-3 region, when transferred into Morex, resulted in a substantial decrease in head shattering. High-resolution mapping of Hst-3 was achieved using isogenic lines. Brittle rachis was mapped with molecular markers and shown to be located in a different position from that of Hst-3. The second major QTL, designated Hst-2 S, is located on chromosome 2 S. This locus is associated with an environmentally sensitive yield QTL.  相似文献   

15.
The Q locus of Iranian and European spelt wheat   总被引:3,自引:0,他引:3  
A dominant allele at the Q locus on chromosome 5A is believed to be the principal factor responsible for free-threshing, square-head spikes with a non-fragile rachis in bread wheat, Triticum aestivum ssp. aestivum. The spelt syndrome, resulting in pyramidal spikes with a brittle rachis and hulled grain in T. aestivum, is believed to be principally caused by the q allele. Chromosome 5A of European and Iranian spelt was substituted for 5A of bread wheat and the lines were characterized with molecular markers. The substitution of bread wheat chromosome 5A by 5A of European spelt resulted in weakly hulled, pyramidal spikes with a non-brittle rachis, whereas and the substitution of 5A by 5A of Iranian spelt did not alter spike morphology at all. It is concluded that the expression of the spelt syndrome depends, to a large extent, on the interactions of q with genes controlling glume tenacity and rachis fragility on other chromosomes. The genetic basis for the spelt syndrome and the apparent presence of the Q allele in Iranian spelt are discussed. Received: 14 April 1999 / Accepted: 21 July 1999  相似文献   

16.
A genetic linkage map of durum wheat   总被引:20,自引:6,他引:14  
 A genetic linkage map of tetraploid wheat [Triticum turgidum (L.) Thell.] was constructed using segregation data from a population of 65 recombinant inbred lines (RILs) derived from a cross between the durum wheat cultivar Messapia and accession MG4343 of T. turgidum (L.) Thell. ssp dicoccoides (Korn.) Thell. A total of 259 loci were analysed, including 244 restriction fragment length polymorphisms (RFLPs), one PCR (polymerase chain reaction) marker (a sequence coding for a LMW (low-molecular-weight) glutenin subunit gene located at the Glu-B3 locus), seven biochemical (six seed-storage protein loci and one isozyme locus) and seven morphological markers. A total of 213 loci were mapped at a LOD≥3 on all 14 chromosomes of the A and B genomes. The total length of the map is 1352 cM and the average distance between adjacent markers is 6.3 cM. Forty six loci could not be mapped at a LOD≥3. A fraction (18.6%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1B, 3AL, 4AL, 6AL and 7AL. The durum wheat map was compared with the published maps of bread wheat using several common RFLP markers and general features are discussed. The markers detected the known structural rearrangements involving chromosomes 4A, 5A and 7B as well as the translocation between 2B-6B, but not the deletion on 2BS. This map provides a useful tool for analysing and breeding economically important quantitative traits and for marker-assisted selection, as well as for studies of genome organisation in small grain cereal species. Received: 5 January 1998 / Accepted: 31 March 1998  相似文献   

17.
The origin of six-rowed cultivated barley has been revealed to be more complex since the discovery of agriocrithon, a six-rowed barley with brittle rachis. The present study investigates whether such six-rowed brittle barley is wild or hybrid in nature, by analyzing genetic diversity at the cMWG699 marker locus, which is closely linked to the vrs1 (six-row gene) locus. DNA sequence analysis for 42 accessions showed only three types in six-rowed brittle barleys; in contrast, nine sequence types were found in ten wild barleys, ssp. spontaneum, in our previous study. Nucleotide diversities for the six-rowed brittle barley were 2.8–4.5 times lower than that for the ssp. spontaneum at this marker locus. The three sequence types found in the six-rowed brittle barley also appeared in the six-rowed cultivated barley. A cross-allelism test confirmed that the six-rowed character of the six-rowed brittle barley was controlled by the vrs1 locus. The nucleotide diversity and genealogy demonstrated that f. agriocrithon does not have the same level of diversity as found in wild barley, ssp. spontaneum. Consequently, f. agriocrithon does not appear to represent genuinely wild populations, but more probably originated from hybridization between ssp. spontaneum and six-rowed cultivated barley.  相似文献   

18.
Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days.  相似文献   

19.
Introgressive lines resulting from crossing common wheat Triticum aestivum with the tetraploid T. timopheevii are characterized by effective resistance to leaf rust caused by Puccinia triticina Eriks. Molecular analysis using 350 specific simple sequence repeat (SSR) markers determined localization of the T. timopheevii genome in chromosomes 1A, 2A, 2B, 5A, 5B, and 6B. A population of F2 offspring of crossing hybrid line 842-2 with common wheat cultivar Skala was obtained for mapping the loci controlling leaf rust resistance. Analysis of association of phenotypic and genotypic data by means of simple interval mapping (SIM) and composite interval mapping (CIM) has shown that the resistance of adult plants is determined by two loci in chromosomes 5B and 2A. The major locus QLr.icg-5B, transferred from T. timopheevii chromosome 5G mapped to the interval of microsatellite loci Xgwm408-Xgwm1257 controls 72% of the phenotypic variance of the trait. The other, minor locus QLr.icg-2A located to chromosome 2A at a distance of 10 cM from Xgwm312 accounts for 7% of the trait expression. Microsatellite markers located near these loci may be used for controlling the transfer of agronomically valuable loci when new lines and cultivars are created.  相似文献   

20.

Background and Aims

Waxy proteins are responsible for amylose synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat. In addition to their role in starch quality, waxy loci have been used to study the phylogeny of wheat. The origin of European spelt (Triticum aestivum ssp. spelta) is not clear. This study compared waxy gene sequences of a Spanish spelt collection with their homologous genes in emmer (T. turgidum ssp. dicoccum), durum (T. turgidum ssp. durum) and common wheat (T. aestivum ssp. aestivum), together with other Asian and European spelt that could be used to determine the origin of European spelt.

Methods

waxy genes were amplified and sequenced. Geneious Pro software, DNAsp and MEGA5 were used for sequence, nucleotide diversity and phylogenetic analysis, respectively.

Key Results

Three, four and three new alleles were described for the Wx-A1, Wx-B1 and Wx-D1 loci, respectively. Spelt accessions were classified into two groups based on the variation in Wx-B1, which suggests that there were two different origins for the emmer wheat that has been found to be part of the spelt genetic make-up. One of these groups was only detected in Iberian material. No differences were found between the rest of the European spelt and the Asiatic spelt, which suggested that the Iberian material had a different origin from the other spelt sources.

Conclusions

The results suggested that the waxy gene variability present in wheat is undervalued. The evaluation of this variability has permitted the detection of ten new waxy alleles that could affect starch quality and thus could be used in modern wheat breeding. In addition, two different classes of Wx-B1 were detected that could be used for evaluating the phylogenetic relationships and the origins of different types of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号