首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater.  相似文献   

2.
To investigate the effects of photosynthetic bacteria as additives on water quality, microbial community structure and diversity, a photosynthetic purple non-sulfur bacteria, Rhodopseudamonas palustris, was isolated and used to remove nitrogen in the aquaculture water. The results of water quality showed that the levels of ammonia nitrogen, nitrite nitrogen, total inorganic nitrogen and total nitrogen in the treatment group were significantly lower (p < 0.05) than the nitrogen levels of the controls in an extended range. A 454-pyrosequencing analysis revealed that at the level of phylum, Proteobacteria and Firmicutes were dominant in the control group respectively, compared to the dominance of the phyla Proteobacteria, Bacteroidetes and Actinobacteria in the treatment group. The relative abundance of phyla Bacteroidetes and Actinobacteria in treatment witnessed an increase than that in the control. The results also indicated that the treatment group enjoyed a higher microbial diversity than that of the control group. Based on the oxygen requirement and metabolism, the authors observed that the water supplementation with photosynthetic bacteria could significantly decrease (p < 0.05) the number of nitrite reducer and anaerobic bacteria. Therefore, the results suggested that adding photosynthetic bacteria to water improves the water quality as it changes the microbial community structure.  相似文献   

3.
Mixed culture hydrogenotrophic nitrate reduction in drinking water   总被引:2,自引:0,他引:2  
Isolation and identification of the bacteria from a hydrogenotrophic reactor for the denitrification of drinking water revealed that several microorganisms are involved. Acinetobacter sp., Aeromonas sp., Pseudomonas sp. and Shewanella putrefaciens were repeatedly isolated from the hydrogenotrophic sludge and postulated to be of primary importance in the process. Nitrate reduction to nitrite appears to be a property of a diverse group of organisms. Nitrite reduction was found to be stimulated by the presence of organic growth factors. Thus, in a mixed culture, hydrogenotrophic denitrification reactor, NO inf2 sup– formed by NO inf3 sup– -reducers can be converted by true denitrifiers thriving on organic growth factors either present in the raw water, or excreted by the microbial community. Mixotrophic growth also contributes to NO inf2 sup– reduction. Finally, chemolithotrophic bacteria participate in the nitrite to nitrogen gas conversion.Offprint requests to: W. Verstraete.  相似文献   

4.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

5.
Beneath Australia''s large, dry Nullarbor Plain lies an extensive underwater cave system, where dense microbial communities known as ‘slime curtains'' are found. These communities exist in isolation from photosynthetically derived carbon and are presumed to be chemoautotrophic. Earlier work found high levels of nitrite and nitrate in the cave waters and a high relative abundance of Nitrospirae in bacterial 16S rRNA clone libraries. This suggested that these communities may be supported by nitrite oxidation, however, details of the inorganic nitrogen cycling in these communities remained unclear. Here we report analysis of 16S rRNA amplicon and metagenomic sequence data from the Weebubbie cave slime curtain community. The microbial community is comprised of a diverse assortment of bacterial and archaeal genera, including an abundant population of Thaumarchaeota. Sufficient thaumarchaeotal sequence was recovered to enable a partial genome sequence to be assembled, which showed considerable synteny with the corresponding regions in the genome of the autotrophic ammonia oxidiser Nitrosopumilus maritimus SCM1. This partial genome sequence, contained regions with high sequence identity to the ammonia mono-oxygenase operon and carbon fixing 3-hydroxypropionate/4-hydroxybutyrate cycle genes of N. maritimus SCM1. Additionally, the community, as a whole, included genes encoding key enzymes for inorganic nitrogen transformations, including nitrification and denitrification. We propose that the Weebubbie slime curtain community represents a distinctive microbial ecosystem, in which primary productivity is due to the combined activity of archaeal ammonia-oxidisers and bacterial nitrite oxidisers.  相似文献   

6.
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3?–N/NO2?–N (about 5 mg/L-N each) and high concentration of mixed NH4+–N and NO3?–N/NO2?–N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.  相似文献   

7.
【背景】不产氧光合细菌(Anoxygenicphototrophicbacteria,APB)作为一类重要的微生物资源,在水产养殖水体氮污染的修复方面已有广泛研究与应用。养殖水体环境复杂,含多种有机物,尤其是有机氮显著影响菌体除氮功效。【目的】在高浓度无机三态氮(氨氮、硝氮和亚硝氮)共存体系中,阐明小分子有机碳、有机氮和盐度对固氮红细菌(Rhodobacter azotoformans) YLK20去除无机三态氮的影响规律及机制,挖掘针对性强和适应性广的高效除氮菌株。【方法】采用RAST和KEGG方法分析YLK20基因组碳氮代谢途径及耐盐机制;采用次溴酸钠氧化法、紫外和N-(1-萘基)-乙二胺分光光度法分别测定氨氮、硝氮和亚硝氮含量。【结果】基因组显示,YLK20拥有EMP、HMP、TCA、固氮、氨化、氨同化和反硝化碳氮代谢途径,含有soh B、nha C、bet B和gbs A等多种耐盐基因。丙酮酸钠、乙酸钠、柠檬酸钠、乙醇和甘露醇是YLK20生长和去除无机三态氮的良好有机碳,葡萄糖和果糖的存在降低了无机三态氮去除能力,蔗糖体系中硝氮和亚硝氮能被良好去除,但氨氮去除能力较低。在高浓度蛋白胨(3.21 g/L)和尿素(1.43 g/L)体系中,YLK20仍能高效去除无机三态氮。YLK20能在3%盐度内生长良好,低盐度时该菌株能良好去除无机三态氮,高盐度时亚硝氮去除能力受到严重抑制。YLK20对海水和淡水实际养殖水体中的无机三态氮有良好去除效果。【结论】YLK20主要通过氨同化和反硝化途径去除无机三态氮,尤其在高浓度有机氮环境中也能高效去除;该菌株适应盐度范围广,兼可适用于淡水和海水养殖水体;该菌株生长和无机三态氮去除影响因素、规律及除氮机制的阐明,可为APB微生物制剂的合理应用提供指导。  相似文献   

8.
Autotrophic nitrite removal in the cathode of microbial fuel cells   总被引:3,自引:0,他引:3  
Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC.  相似文献   

9.
The contamination of surface water by nitrogen due to fertilizer application and discharge of wastewater is an increasingly serious problem. A multifunctional device, which combines water-lifting and aeration (WLA) with oligotrophic biological contact oxidation (OBCO), was developed for pretreatment of raw water to reduce nitrogen. The performance of nitrogen removal and changes in microbial community structure were investigated. The results showed that the combined technique of WLA-OBCO was feasible, and that ammonium, nitrate, total nitrogen and total organic carbon were effectively removed. Meanwhile, nitrite was mostly undetectable. The PCR-DGGE and clone sequencing results revealed that α-proteobacterium was the largest bacterial group, and Pseudomonas strains Y3 and J8 were the dominant bacteria.  相似文献   

10.
A mixed culture containing nitrifying bacteria and denitrifying bacteria was investigated for aerobic simultaneous nitrification and denitrification. A mixture of NaHCO3 and CH3COONa was selected as the appropriate carbon source for cell growth and nitrogen removal, the concentrations of carbon and nitrogen sources were also examined. Ammonia could be oxidized aerobically to nitrite by the mixed culture, and the intermediate nitrite was then reduced to dinitrogen gas. No nitrite was detected during the process. 0.212 g of ammonia/l could be removed in 30 h and nitrate could not be utilized aerobically by the mixed culture. Nitrite could be degraded aerobically as well as anaerobically. Very little ammonia was degraded anaerobically, but the ability to degrade ammonia could be recovered even after oxygen had been supplied for 42 h.  相似文献   

11.
A hydrogenotrophic denitrification system was evaluated in removing nitrate from synthetic aquaculture wastewater for recirculation purposes. Two membrane bioreactor (MBR) systems, namely, aeration–denitrification system (ADS) and denitrification–aeration system (DAS) were studied with 50 mg/L of influent concentrations for both organic matter and nitrate nitrogen. The DAS achieved better removal efficiency of 91.4% total nitrogen (T-N) and denitrification rate of 363.7 mg/L.day at a HRT of 3 h compared to ADS. Further, there was no nitrite accumulation in the DAS effluent. The nitrite accumulation in ADS effluent was lesser when CO2 was used as buffer rather than K2HPO4 and KH2PO4. Estimation of kinetic parameters of hydrogenotrophic bacteria indicated lesser sludge production compared to heterotrophic denitrification. In the DAS, membrane fouling was nonexistent in the aeration reactor that was used to produce the recirculating effluent. On the contrary, membrane fouling was observed in the denitrification reactor that supplied hydrogen to the mixed liquor. Thus, this study demonstrated DAS capability in maintaining the acceptable water quality appropriate for aquaculture, in which a closed recirculating system is typically used.  相似文献   

12.
13.
The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 ± 1.2‰, 32.5 ± 0.6‰, and 35.6 ± 1.4‰ for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 ± 4.2‰) was similar to that produced during hydroxylamine oxidation (33.5 ± 1.2‰) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 ± 1.7‰), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (−0.6 ± 1.9‰ and −0.5 ± 1.9‰, respectively) were similar to those during nitrate reduction (−0.5 ± 1.9‰ and −0.5 ± 0.6‰, respectively), indicating no influence of either substrate on site preference. Site preferences of ~33‰ and ~0‰ are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.  相似文献   

14.
Nitrate removal from synthetic and real groundwater was investigated by using cassava distiller’s dried grains (CDDG), which served as sole carbon source as well as the only microbe seed. It was found that remarkably higher total nitrogen removal efficiency (96.8±0.6 %) could be reached; the accumulation of nitrite and the releases of organic compounds, meanwhile, were insignificant in the denitrification process. Scanning electron microscope (SEM) analysis showed that CDDG were degraded during the denitrification process. Further investigation showed that CDDG were anaerobically hydrolyzed and acidified to butyric acid, acetic acid, and carbohydrate, which could be utilized directly as the reducing equivalent providers for denitrification by the microorganisms separated from CDDG. Microbial community analysis revealed that the fungi and bacteria present in the original CDDG functioned as the denitrifiers, which mainly consisted of Aspergillus (69.8 %) and Rhizomucor (15.9 %) in the fungi community and Burkholderia (20.6 %) and Rhizobium (15.9 %) in the bacteria community, respectively. Finally, the use of CDDG as both carbon and microbial sources for real groundwater denitrification was testified to be feasible and safe with a total nitrogen removal efficiency of around 100 %.  相似文献   

15.
In a model drinking water distribution system characterized by a low assimilable organic carbon content (<10 μg/liter) and no disinfection, the bacterial community was identified by a phylogenetic analysis of rRNA genes amplified from directly extracted DNA and colonies formed on R2A plates. Biofilms of defined periods of age (14 days to 3 years) and bulk water samples were investigated. Culturable bacteria were associated with Proteobacteria and Bacteriodetes, whereas independently of cultivation, bacteria from 12 phyla were detected in this system. These included Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia, some of which have never been identified in drinking water previously. A cluster analysis of the population profiles from the individual samples divided biofilms and bulk water samples into separate clusters (P = 0.027). Bacteria associated with Nitrospira moscoviensis were found in all samples and encompassed 39% of the sequenced clones in the bulk water and 25% of the biofilm community. The close association with Nitrospira suggested that a large part of the population had an autotrophic metabolism using nitrite as an electron donor. To test this hypothesis, nitrite was added to biofilm and bulk water samples, and the utilization was monitored during 15 days. A first-order decrease in nitrite concentration was observed for all samples with a rate corresponding to 0.5 × 105 to 2 × 105 nitrifying cells/ml in the bulk water and 3 × 105 cells/cm2 on the pipe surface. The finding of an abundant nitrite-oxidizing microbial population suggests that nitrite is an important substrate in this system, potentially as a result of the low assimilable organic carbon concentration. This finding implies that microbial communities in water distribution systems may control against elevated nitrite concentrations but also contain large indigenous populations that are capable of assisting the depletion of disinfection agents like chloramines.  相似文献   

16.

Background

Denitrification is an important ecosystem service that removes nitrogen (N) from N-polluted watersheds, buffering soil, stream, and river water quality from excess N by returning N to the atmosphere before it reaches lakes or oceans and leads to eutrophication. The denitrification enzyme activity (DEA) assay is widely used for measuring denitrification potential. Because DEA is a function of enzyme levels in soils, most ecologists studying denitrification have assumed that DEA is less sensitive to ambient levels of nitrate (NO3 ) and soil carbon and thus, less variable over time than field measurements. In addition, plant diversity has been shown to have strong effects on microbial communities and belowground processes and could potentially alter the functional capacity of denitrifiers. Here, we examined three questions: (1) Does DEA vary through the growing season? (2) If so, can we predict DEA variability with environmental variables? (3) Does plant functional diversity affect DEA variability?

Methodology/Principal Findings

The study site is a restored wetland in North Carolina, US with native wetland herbs planted in monocultures or mixes of four or eight species. We found that denitrification potentials for soils collected in July 2006 were significantly greater than for soils collected in May and late August 2006 (p<0.0001). Similarly, microbial biomass standardized DEA rates were significantly greater in July than May and August (p<0.0001). Of the soil variables measured—soil moisture, organic matter, total inorganic nitrogen, and microbial biomass—none consistently explained the pattern observed in DEA through time. There was no significant relationship between DEA and plant species richness or functional diversity. However, the seasonal variance in microbial biomass standardized DEA rates was significantly inversely related to plant species functional diversity (p<0.01).

Conclusions/Significance

These findings suggest that higher plant functional diversity may support a more constant level of DEA through time, buffering the ecosystem from changes in season and soil conditions.  相似文献   

17.
Factors controlling the anaerobic oxidation of ammonium with nitrate and nitrite were explored in a marine sediment from the Skagerrak in the Baltic-North Sea transition. In anoxic incubations with the addition of nitrite, approximately 65% of the nitrogen gas formation was due to anaerobic ammonium oxidation with nitrite, with the remainder being produced by denitrification. Anaerobic ammonium oxidation with nitrite exhibited a biological temperature response, with a rate optimum at 15°C and a maximum temperature of 37°C. The biological nature of the process and a 1:1 stoichiometry for the reaction between nitrite and ammonium indicated that the transformations might be attributed to the anammox process. Attempts to find other anaerobic ammonium-oxidizing processes in this sediment failed. The apparent Km of nitrite consumption was less than 3 μM, and the relative importance of ammonium oxidation with nitrite and denitrification for the production of nitrogen gas was independent of nitrite concentration. Thus, the quantitative importance of ammonium oxidation with nitrite in the jar incubations at elevated nitrite concentrations probably represents the in situ situation. With the addition of nitrate, the production of nitrite from nitrate was four times faster than its consumption and therefore did not limit the rate of ammonium oxidation. Accordingly, the rate of this process was the same whether nitrate or nitrite was added as electron acceptor. The addition of organic matter did not stimulate denitrification, possibly because it was outcompeted by manganese reduction or because transport limitation was removed due to homogenization of the sediment.  相似文献   

18.
The course of denitrification of nitrate in static cultures of Paracoccus denitrificans was studied. Reduction of nitrate to gaseous nitrogen without accumulation of nitrite because of parallel and balanced activities of nitrate and nitrite reductases was observed in nutrient broth. In minimal liquid cultures supplemented with either methanol, acetate, or ethanol as a sole carbon source, substantial amounts of nitrite (up to 70%) accumulated. The reduction in nitrite concentration began just after the transformation of nitrate to nitrite was completed. The addition of some growth factors to minimal media shortened the bacterial biomass doubling time. A correlation coefficient of 0.71 between the doubling time and the amount of accumulated nitrite in cultures was found. My results indicated that the type of denitrification carried out by P. denitrificans is not stable and depends on the nutritional composition of the culture medium.  相似文献   

19.
This study was conducted to evaluate the effects of Bacillus subtilis SC02 supplement on water quality, microbial community diversity and structure in a grass carp (Ctenopharyngodon idellus) culture. Our selected strain, B. subtilis SC02, significantly reduced ammonia, nitrite and total nitrogen levels in water over an extended period compared with the control group. Pyrosequencing showed that the Shannon diversity index (Shannon) and species richness estimators (Chao) of the treatment group were higher, indicating that bacterial richness was significantly increased in the treatment group. The phyla Proteobacteria, Bacteroidetes and Actinobacteria were dominant in the treatment groups, accounting for 45, 21.9 and 21.9 % of the sequence reads, respectively. However, in sharp contrast, the control fishes were predominantly occupied by Proteobacteria (82.1 %) and Firmicutes (8.4 %). At the genus level, the microbial communities were different between the control and treatment groups, although the two groups shared similar genera. Additionally, some genera (such as Tepidimonas, Variovorax, Roseomonas, Rubritepida, Nitrobacter, etc.) only appeared in the treatment group, and many other genera only existed in the control group. Therefore, we conclude that the addition of the SC02 strain in water improves water quality, which may ultimately be a result of changes in microbial community diversity in grass carp cultures.  相似文献   

20.
Thiosphaera pantotropha is capable of simultaneous heterotrophic nitrification and aerobic denitrification. Consequently, its nitrification potential could not be judged from nitrite accumulation, but was estimated from complete nitrogen balances. The maximum rate of nitrification obtained during these experiments was 93.9 nmol min−1 mg of protein−1. The nitrification rate could be reduced by the provision of nitrate, nitrite, or thiosulfate to the culture medium. Both nitrification and denitrification increased as the dissolved oxygen concentration fell, until a critical level was reached at approximately 25% of air saturation. At this point, the rate of (aerobic) denitrification was equivalent to the anaerobic rate. At this dissolved oxygen concentration, the combined nitrification and denitrification was such that cultures receiving ammonium as their sole source of nitrogen appeared to become oxygen limited and the nitrification rate fell. It appeared that, under carbon-and energy-limited conditions, a high nitrification rate was correlated with a reduced biomass yield. To facilitate experimental design, a working hypothesis for the mechanism behind nitrification and denitrification by T. pantotropha was formulated. This involved the basic assumption that this species has a “bottleneck” in its cytochrome chain to oxygen and that denitrification and nitrification are used to overcome this. The nitrification potential of other heterotrophic nitrifiers has been reconsidered. Several species considered to be “poor” nitrifiers also simultaneously nitrify and denitrify, thus giving a falsely low nitrification potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号