首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning and characterization of tomato leaf senescence-related cDNAs   总被引:24,自引:0,他引:24  
John  Isaac  Hackett  Rachel  Cooper  Wendy  Drake  Rachel  Farrell  Aldo  Grierson  Don 《Plant molecular biology》1997,33(4):641-651
Senescence-related cDNA clones designated SENU1, 4, 5 (senescence up-regulated) and SEND32, 33, 34, 35 and 36 (senescence down-regulated) isolated from a tomato leaf cDNA library [9] were characterized. Southern analysis showed that SEND32 is encoded by a single-copy gene while SEND33, 34, 35, 36 and SENU1 and SENU5 are members of small gene families. DNA and protein database searches revealed that SEND32, SEND35, SENU1 and SENU5 are novel cDNAs of unknown function. SEND33 encodes ferredoxin, SEND34 encodes a photosystem II 10 kDa polypeptide and SEND36 encodes catalase. The SENU4 sequence is identical to the P6 tomato protein previously reported to be pathogenesis-related [46]. The mRNA levels of SENU1, 4 and 5 increased during leaf senescence and SENU1 and SENU5 were also expressed at high levels during leaf development and in other plant organs. The SENU4 mRNA was associated more specifically with leaf senescence, although low expression was also detected in green fruit. The mRNAs for all SEND clones decreased during tomato leaf development and senescence and all except SEND32 were expressed at low levels in other plant organs. The accumulation of mRNA homologous to SENU4 and the decrease in abundance of SEND32 provide good molecular markers for leaf senescence.  相似文献   

2.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

3.
A cysteine protease cDNA clone (See1) highly homologous to barley aleurain was isolated from Lolium multiflorum leaves. During leaf senescence, expression of the See1 mRNA and protein was strongly enhanced. In dark-incubated leaf segments, cytokinin delayed senescence and reduced expression of both See1 mRNA and protein.  相似文献   

4.
cDNA clones derived from a ripe tomato fruit cDNA library were used to investigate changes in the abundance of specific mRNAs in ripening fruit and wounded leaves. mRNAs related to one cDNA clone (pTOM 13) were expressed in both situations. This clone was used to identify homologous sequences in a tomato genomic library. Three groups of related clones that hybridised to the pTOM 13 cDNA insert were identified and subcloned into plasmid vectors. Genomic Southern analysis of tomato DNA using gene-specific DNA fragments isolated from the subcloned DNAs indicated that all pTOM 13 closely related genes had been isolated. RNA dot blot analysis with these DNA fragments as probes indicated differential expression of this small multigene family in leaves and fruit.  相似文献   

5.
6.
7.
A cDNA clone encoding a cysteine protease was isolated from a tobacco cDNA library, utilizing as a probe a PCR fragment obtained from degenerated primers based on the conserved sequences of plant cysteine protease genes. A putative protein encoded by the clone NTCP-23 had an amino acid sequence with significant similarities to those of plant senescence-associated cysteine proteases and mammalian cathepsin H. Northern blot analysis showed that NTCP-23 mRNA is expressed in all organs and the mRNA and protein expression is enhanced during natural senescence. We propose that NTCP-23 is responsible for amino acid remobilization especially in senescencing leaves. Furthermore, it was found that the mRNA expression follows a circadian rhythm and is reduced by continuous darkness, wounding and hypersensitive reaction (HR). NTCP-23 is the first cysteine protease whose mRNA expression has been shown to be temporarily reduced by wounding.  相似文献   

8.
9.
Harvest-induced senescence of broccoli results in tissue wilting and sepal chlorosis. As senescence progresses, chlorophyll and protein levels in floret tissues decline and endo-protease activity (measured with azo-casein) increases. Protease activity increased from 24 h after harvest for tissues held in air at 20 degrees C. Activity was lower in floret tissues from branchlets that had been held in solutions of sucrose (2% w/v) or under high carbon dioxide, low oxygen (10% CO(2), 5% O(2)) conditions. Four protease-active protein bands were identified in senescing floret tissue by zymography, and the use of chemical inhibitors of protease action suggests that some 44% of protease activity in senescing floret tissue 72 h after harvest is due to the action of cysteine and serine proteases. Four putative cysteine protease cDNAs have been isolated from broccoli floret tissue (BoCP1, BoCP2, BoCP3, BoCP4). The cDNAs are most similar (73-89% at the amino acid level) to dehydration-responsive cysteine proteases previously isolated from Arabidopsis thaliana (RD19, RD21). The mRNAs encoded by the broccoli cDNAs are expressed in floret tissue during harvest-induced senescence with mRNA accumulating within 6 h of harvest for BoCP1, 12 h of harvest for BoCP4 and within 24 h of harvest for BoCP2 and BoCP3. Induction of the cDNAs is differentially delayed when broccoli branchlets are held in solutions of water or sucrose. In addition, the expression of BoCP1 and BoCP3 is inhibited in tissue held in atmospheres of high carbon dioxide/low oxygen (10% CO(2), 5% O(2)). The putative cysteine protease mRNAs are expressed before measurable increases in endo-protease activity, loss of protein, chlorophyll or tissue chlorosis.  相似文献   

10.
The cDNA for a novel Plasmodium cysteine protease (falcipain-2) has been isolated from a Plasmodium falciparum cDNA library. A 602 bp fragment was amplified from P. falciparum by PCR using degenerate oligonucleotide primers. The primers were designed based upon the amino acids flanking the active site cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteases. This fragment was used to screen a P. falciparum cDNA library and isolated a 2.1 kb clone that encoded a novel cysteine protease. The sequence of the 2.1 kb clone predicted a 56 kDa protein containing a typical signal sequence, a prosequence and a 24.7 kDa mature protease with 37% identity to falcipain-1, a hemoglobin-degrading cysteine protease of P. falciparum. Northern blot analysis detected a 2.1 kb message in trophozoites. Taken together, we have isolated a novel cysteine protease of P. falciparum, which may play an important role at the late stages of the erythrocytic cycle of the parasite.  相似文献   

11.
Twenty-five clones were randomly selected from a mature pollen cDNA library of Easter lily (Lilium longiflorum Thunb.) in order to study the abundance of pollen-expressed mRNAs and the functional roles of the proteins encoded by these mRNAs. Plaque hybridization experiments were conducted to estimate indirectly the expression level of the mRNAs. Based on the hybridization frequency in the mature pollen library, the cDNA clones were divided into three abundance groups. Eight clones belonged to a high abundance class in which each cDNA clone was present in the mature lily pollen library at a frequency between 0.3 and 3%. Six of these clones were not found in cDNA libraries made from carpel, leaf, or root, suggesting that they are preferentially expressed in pollen. Fourteen clones belonged to a medium abundance class and were present in the mature pollen library at a frequency between 0.01 and 0.08%. The remaining three clones, which were present at a frequency below 0.01%, were grouped as a low abundance class. Almost all of the cDNA clones which belong to either the medium or low abundance class were also detected in the leaf library. Northern blot hybridization with three of the highly abundant cDNA clones confirmed their preferential expression in anther. In situ hybridization experiment with one of the clones showed the pollen-specific expression of the clone in mature anther. DNA sequence analysis revealed that the clone LMP131 encodes a peptide which is highly homologous to the tomato pollen-preferential gene, LAT59, which encodes a putative pectate lyase. The clone LMP134 encodes a peptide that shows an extensive similarity to a variety of thioredoxins. The third clone LMP132 encodes a 182-residue protein that has no significant homology to known sequences.  相似文献   

12.
In a previous study, a 65 kDa protein, TDI-65, was found to be accumulated in the leaves of drought-stressed tomato (Lycopersicon esculentum cv. Starfire) plants. The protein level returns to control level when the drought-stressed plants are rewatered. Antibodies raised against the purified protein were used to elucidate the subcellular localization of the protein. The protein was found to be mainly localized in the nuclei and chloroplasts of drought-stressed leaf cells. To identify the nature of the protein, a cDNA library was constructed and screened by the purified anti-TDI-65 antibody. A cDNA clone designated tdi-65 was isolated and characterized. The deduced amino acid sequences of tdi-65 protein has extensive homology with known cysteine proteases such as actinidin and papain. Northern blot analysis revealed that tdi-65 mRNA is 10-fold higher in drought-stressed plants as compared to control and rewatered plants. Similar results were observed in the tomato cultivar Ailsa and its near isogenic abscisic acid (ABA)-deficient mutant line, flacca, suggesting that the gene does not require ABA for its expression under drought conditions. Based on the previous immunolocalization findings we suggest that tdi-65 encoded cysteine protease functions in relation to drought-induced senescence and programmed cell death.  相似文献   

13.
14.
15.
Here we show that the expression of a cysteine proteinase coincides with several developmental events associated with programmed cell death (PCD) in Solanum melongena (brinjal), i.e. during leaf senescence, fruit senescence, xylogenesis, nucellar cell degeneration and anther senescence. We have isolated a cDNA encoding brinjal cysteine proteinase (SmCP) that shares high (90-92%) amino acid identity to cysteine proteinases of tobacco (CYP-8) and tomato (LCYP-2) that have not been previously reported to be senescence-associated. In contrast, SmCP shows lower (39-41%) amino acid identity to other senescence-related cysteine proteinases and, unlike most of them, it is not preferentially expressed in certain organs or cell types. Northern analysis of leaves, fruits and flowers at different stages of development showed that SmCP expression increased significantly at senescence in leaf and fruit, but was highly expressed throughout flower development. In situ hybridization studies on flower sections using an antisense RNA probe localized the SmCP mRNA to the xylem, the epidermis and the endothecium of the anther and the nucellar cells, suggesting its involvement in PCD during xylogenesis, anther senescence and ovule development, respectively. Its expression during nucellar cell degeneration suggests that protein reserves of the nucellus are released to the developing embryo. Polarity in its pattern of expression in the nucellus of the developing seed (40DAP) further implies a directional flow of these nutrients.  相似文献   

16.
A cDNA clone encoding a lipase that is up-regulated in senescing leaves and flower petals has been isolated by screening an expression library. The abundance of the lipase mRNA increases as flowers and leaves begin to senesce, and expression of the gene is also induced by treatment with ethylene. Transgenic Arabidopsis plants in which levels of the senescence-induced lipase protein have been reduced show delayed leaf senescence.  相似文献   

17.
Leaf senescence was characterised in two Zea mays lines, earlier senescence (ES) and later senescence (LS). Loss of chlorophyll was delayed in LS compared with ES, but the decline in photosynthesis occurred simultaneously in the two lines. Western analysis detected transition points during senescence of both lines when major quantitative and qualitative changes occurred in a number of leaf proteins. Differences in the pattern of translatable mRNAs were apparent earlier than alterations in pigment or protein levels. A cDNA library was constructed using mRNA from ES leaves early in senescence and differential screening was employed to isolate senescence-related clones. Two senescence-enhanced cDNAs showed sequence homology with cDNAs for seed proteins - a cysteine protease and a protein-processing enzyme. These findings suggest that there are similarities between gene expression during seed maturation, germination and leaf senescence. Other senescence-enhanced cDNAs were related to genes implicated in gluconeogenesis and chlorophyll breakdown.  相似文献   

18.
Factors that influence the longevity and senescence of photosynthetic tissues of Arabidopsis were investigated. To determine the influence of reproductive development on the timing of somatic tissue senescence, the longevity of rosette leaves of the Landsberg erecta strain and of isogenic mutant lines in which flowering is delayed (co-2) or sterile flowers are produced (ms1-1) were compared. No difference in the timing of senescence of individual leaves was observed between these lines, indicating that somatic tissue longevity is not governed by reproductive development in this species. To examine the role of differential gene expression in the process of leaf senescence, cDNA clones representing genes that are differentially expressed in senescing tissues were isolated. Sequence analysis of one such clone indicated homology to previously cloned cysteine proteinases, which is consistent with a role for the product of this gene in nitrogen salvage. RNA gel blot analysis revealed that increased expression of senescence-associated genes is preceded by declines in photosynthesis and in the expression of photosynthesis-associated genes. A model is presented in which it is postulated that leaf senescence is triggered by age-related declines in photosynthetic processes.  相似文献   

19.
Zhao L  Luo Q  Yang C  Han Y  Li W 《Planta》2008,227(6):1389-1399
  相似文献   

20.
The molecular regulation of seed dormancy was investigated using differential display to visualize and isolate cDNAs representing differentially expressed genes during early imbibition of dormant and nondormant Avena fatua L. embryos. Of about 3000 cDNA bands examined, 5 cDNAs hybridized with mRNAs exhibiting dormancy-associated expression patterns during the first 48 h of imbibition, while many more nondormancy-associated cDNAs were observed. Dormancy-associated clone AFD1 hybridized with a 1.5 kb mRNA barely detectable in dry dormant and nondormant embryos that became more abundant in dormant embryos after 24 h of imbibition. Clone AFD2 hybridized with two mRNAs, a 1.3 kb message constitutively expressed in dormant and nondormant embryos and a 0.9 kb message present at higher levels in dormant embryos after 3 h of imbibition. Nondormancy-associated clones AFN1, AFN2 and AFN3 hybridized with 1.5 kb, 1.7 kb and 1.1 kb mRNAs, respectively, that were more abundant in nondormant embryos during imbibition. Expression patterns of some mRNAs in dormant embryos induced to germinate by GA3 treatment were different than water controls, but were not identical to those observed in nondormant embryos. DNA sequence analysis revealed 76% sequence identity between clone AFN3 and a Citrus sinensis glutathione peroxidase-like cDNA, while significant sequence similarities with known genes were not found for other clones. Southern hybridization analyses showed that all clones represent low (1 to 4) copy number genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号