首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The digestive vacuole plasmepsins PfPM1, PfPM2, PfPM4, and PfHAP (a histoaspartic proteinase) are 4 aspartic proteinases among 10 encoded in the Plasmodium falciparum malarial genome. These have been hypothesized to initiate and contribute significantly to hemoglobin degradation, a catabolic function essential to the survival of this intraerythrocytic parasite. Because of their perceived significance, these plasmepsins have been proposed as potential targets for antimalarial drug development. To test their essentiality, knockout constructs were prepared for each corresponding gene such that homologous recombination would result in two partial, nonfunctional gene copies. Disruption of each gene was achieved, as confirmed by PCR, Southern, and Northern blot analyses. Western and two-dimensional gel analyses revealed the absence of mature or even truncated plasmepsins corresponding to the disrupted gene. Reduced growth rates were observed with PfPM1 and PfPM4 knockouts, indicating that although these plasmepsins are not essential, they are important for parasite development. Abnormal mitochondrial morphology also appeared to accompany loss of PfPM2, and an abundant accumulation of electron-dense vesicles in the digestive vacuole was observed upon disruption of PfPM4; however, those phenotypes only manifested in about a third of the disrupted cells. The ability to compensate for loss of individual plasmepsin function may be explained by close similarity in the structure and active site of these four vacuolar enzymes. Our data imply that drug discovery efforts focused on vacuolar plasmepsins must incorporate measures to develop compounds that can inhibit two or more of this enzyme family.  相似文献   

2.
The plasmepsins are key enzymes in the life cycle of the Plasmodium parasites responsible for malaria. Since plasmepsin inhibition leads to parasite death, these enzymes have been acknowledged to be important targets for the development of new antimalarial drugs. The development of effective plasmepsin inhibitors, however, is compounded by their genomic diversity which gives rise not to a unique target for drug development but to a family of closely related targets. Successful drugs will have to inhibit not one but several related enzymes with high affinity. Structure-based drug design against heterogeneous targets requires a departure from the classic 'lock-and-key' paradigm that leads to the development of conformationally constrained molecules aimed at a single target. Drug molecules designed along those principles are usually rigid and unable to adapt to target variations arising from naturally occurring genetic polymorphisms or drug-induced resistant mutations. Heterogeneous targets need adaptive drug molecules, characterised by the presence of flexible elements at specific locations that sustain a viable binding affinity against existing or expected polymorphisms. Adaptive ligands have characteristic thermodynamic signatures that distinguish them from their rigid counterparts. This realisation has led to the development of rigorous thermodynamic design guidelines that take advantage of correlations between the structure of lead compounds and the enthalpic and entropic components of the binding affinity. In this paper, we discuss the application of the thermodynamic approach to the development of high affinity (K(i) - pM) plasmepsin inhibitors. In particular, a family of allophenylnorstatine-based compounds is evaluated for their potential to inhibit a wide spectrum of plasmepsins.  相似文献   

3.
Development of new antimalarial drugs continues to be of huge importance because of the resistance of malarial parasite towards currently used drugs. Due to the reliance of parasite on glycolysis for energy generation, glycolytic enzymes have played important role as potential targets for the development of new drugs. Plasmodium falciparum lactate dehydrogenase (PfLDH) is a key enzyme for energy generation of malarial parasites and is considered to be a potential antimalarial target. Presently, there are nearly 15 crystal structures bound with inhibitors and substrate that are available in the protein data bank (PDB). In the present work, we attempted to consider multiple crystal structures with bound inhibitors showing affinity in the range of 1.4 × 102–1.3 × 106 nM efficacy and optimized the pharmacophore based on the energy involved in binding termed as e-pharmacophore mapping. A high throughput virtual screening (HTVS) combined with molecular docking, ADME predictions and molecular dynamics simulation led to the identification of 20 potential compounds which could be further developed as novel inhibitors for PfLDH.  相似文献   

4.
The malarial aspartic proteinases (plasmepsins) have been discovered in several species of Plasmodium, including all four of the human malarial pathogens. In P.falciparum, plasmepsins I, II, IV and HAP have been directly implicated in hemoglobin degradation during malaria infection, and are now considered targets for anti-malarial drug design. The plasmepsins are produced from inactive zymogens, proplasmepsins, having unusually long N-terminal prosegments of more than 120 amino acids. Structural and biochemical evidence suggests that the conversion process of proplasmepsins to plasmepsins differs substantially from the gastric and plant aspartic proteinases. Instead of blocking substrate access to a pre-formed active site, the prosegment enforces a conformation in which proplasmepsin cannot form a functional active site. We have determined crystal structures of plasmepsin and proplasmepsin from P.vivax. The three-dimensional structure of P.vivax plasmepsin is typical of the monomeric aspartic proteinases, and the structure of P.vivax proplasmepsin is similar to that of P.falciparum proplasmepsin II. A dramatic refolding of the mature N terminus and a large (18 degrees ) reorientation of the N-domain between P.vivax proplasmepsin and plasmepsin results in a severe distortion of the active site region of the zymogen relative to that of the mature enzyme. The present structures confirm that the mode of inactivation observed originally in P.falciparum proplasmepsin II, i.e. an incompletely formed active site, is a true structural feature and likely represents the general mode of inactivation of the related proplasmepsins.  相似文献   

5.
Plasmepsins are aspartic proteases involved in the initial steps of the hemoglobin degradation pathway, a critical stage in the Plasmodium falciparum life cycle during human infection. Thus, they are attractive targets for novel therapeutic compounds to treat malaria, which remains one of the world's biggest health problems. The three-dimensional structures available for P. falciparum plasmepsins II and IV make structure-based drug design of antimalarial compounds that focus on inhibiting plasmepsins possible. However, the structural flexibility of the plasmepsin active site cavity combined with insufficient knowledge of the functional residues and of those determining the specificity of parasitic enzymes is a drawback when designing specific inhibitors. In this study, we have combined a sequence and structural analysis with molecular dynamics simulations to predict the functional residues in P. falciparum plasmepsins. The careful analysis of X-ray structures and 3D models carried out here suggests that residues Y17, V105, T108, L191, L242, Q275, and T298 are important for plasmepsin function. These seven amino acids are conserved across the malarial strains but not in human aspartic proteases. Residues V105 and T108 are localized in a flap of an interior pocket and they only establish contacts with a specific non-peptide achiral inhibitor. We also observed a rapid conformational change in the L3 region of plasmepsins that closes the active site of the enzyme, which explains earlier experimental findings. These results shed light on the role of V105 and T108 residues in plasmepsin specificities, and they should be useful in structure-based design of novel, selective inhibitors that may serve as antimalarial drugs.  相似文献   

6.
The increasing resistance of the malarial parasite to antimalarial drugs is a major contributor to the reemergence of the disease and increases the need for new drug targets. The two aspartic proteases, plasmepsins I and II, from Plasmodium falciparum have recently emerged as potential targets. In an effort to inhibit these hemoglobinases, a series of inhibitors encompassing a basic hydroxyethylamine transition state isostere as a central fragment were prepared. The synthesized compounds were varied in the P1' position and exhibited biological activities in the range of 31 to >2000 nM. To try to rationalize the results, molecular docking and 3D-QSAR analysis were used.  相似文献   

7.
Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1?, respectively. The apoenzyme crystallized in the orthorhombic space group P2(1)2(1)2(1) with two molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4(3) with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.  相似文献   

8.
Since their discovery, halogenated metabolites have been somewhat of a biological peculiarity and it is only now that we are beginning to realize the full extent of their medicinal value. With the exception of the well characterized haloperoxidases, most of the biosynthetic enzymes and mechanisms responsible for the halogenations have remained elusive. The crystal structures of two functionally diverse halogenases have been recently solved, providing us with new and exciting mechanistic detail. This new insight has the potential to be used both in the development of biomimetic halogenation catalysts and in engineering halogenases, and related enzymes, to halogenate new substrates. Interestingly, these new structures also illustrate how the evolution of these enzymes mirrors that of the monooxygenases, where the cofactor is selected for its ability to generate a powerful oxygenating species. In this highlight article we will examine the proposed catalytic mechanisms of the halogenases and how these relate to their structures. In addition, we will consider how this chemistry might be harnessed and developed to produce novel enzymatic activity.  相似文献   

9.
The plasmepsins are the aspartic proteases of malaria parasites. Treatment of aspartic protease inhibitor inhibits hemoglobin hydrolysis and blocks the parasite development in vitro suggesting that these proteases might be exploited their potentials as antimalarial drug targets. In this study, we determined the genetic variations of the aspartic proteases of Plasmodium vivax (PvPMs) of wild isolates. Two plasmepsins (PvPM4 and PvPM5) were cloned and sequenced from 20 P. vivax Korean isolates and two imported isolates. The sequences of the enzymes were highly conserved except a small number of amino acid substitutions did not modify key residues for the function or the structure of the enzymes. The high sequence conservations between the plasmepsins from the isolates support the notion that the enzymes could be reliable targets for new antimalarial chemotherapeutics.  相似文献   

10.
Thiol-based redox metabolism of protozoan parasites   总被引:4,自引:0,他引:4  
The review considers redox enzymes of Plasmodium spp., Trypanosomatida, Trichomonas, Entamoeba and Giardia, with special emphasis on their potential use as targets for drug development. Thiol-based redox systems play pivotal roles in the success and survival of these parasitic protozoa. The synthesis of cysteine, the key molecule of any thiol metabolism, has been elucidated in trypanosomatids and anaerobes. In trypanosomatids, trypanothione replaces the more common glutathione system. The enzymes of trypanothione synthesis have recently been identified. The role of trypanothione in the detoxification of reactive oxygen species is reflected in the multiplicity of trypanothione-dependent peroxidases. In Plasmodium falciparum, the crystal structures of glutathione reductase and glutamate dehydrogenase are now available; another drug target, thioredoxin reductase, has been demonstrated to be essential for the malarial parasite.  相似文献   

11.
M Krugliak  Z Waldman  H Ginsburg 《Life sciences》1987,40(13):1253-1257
Human erythrocytes were loaded with either gentamicin or amikacin and subsequently infected with the human malarial parasite Plasmodium falciparum and grown in culture. Parasite invasion of erythrocytes was unaffected by the drugs, but subsequent development was retarded. The digestion of host cell cytosol in ring-stage parasites was inhibited by the drugs. A substantial acid, Ca2+-independent phospholipase activity could be monitored in parasite cytosol and was found to be inhibited by the drugs. These results imply that phospholipases are involved in the feeding mechanism of the parasite and that gentamicin and amikacin exert their inhibitory activity by affecting these enzymes.  相似文献   

12.
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.  相似文献   

13.
Two targeted chromogenic octapeptide combinatorial libraries, comprised of 38 pools each containing 361 different peptides, were used to analyze the enzyme/substrate interactions of five plasmepsins. The first library (P1 library) was based on a good synthetic aspartic peptidase substrate [Westling, J., Cipullo, P., Hung, S. H., Saft, H., Dame, J. B., and Dunn, B. M. (1999) Protein Sci. 8, 2001-2009; Scarborough, P. E., and Dunn, B. M. (1994) Protein Eng. 7, 495-502] and had the sequence Lys-Pro-(Xaa)-Glu-P1*Nph-(Xaa)-Leu. The second library (P1' library) incorporated results with the plasmepsins from the first library and had the sequence Lys-Pro-Ile-(Xaa)-Nph*P1'-Gln-(Xaa). In both cases, P1 and P1' were fixed residues for a given peptide pool, where Nph was a para-nitrophenylalanine chromogenic reporter and Xaa was a mixture of 19 different amino acids. Kinetic assays monitoring the rates of cleavage of these libraries revealed the optimal P1 and P1' residues for the five plasmepsins as hydrophobic substitutions. Extended specificity preferences were obtained utilizing liquid chromatography-mass spectrometry (LC-MS) to analyze the cleavage products produced by enzyme-catalyzed digestion of the best pools of each peptide library. LC-MS analysis of the P1-Phe and P1'-Phe pools revealed the favored amino acids at the P3, P2, P2', and P3' positions. These analyses have provided new insights on the binding preferences of malarial digestive enzymes that were used to design specific methyleneamino peptidomimetic inhibitors of the plasmepsins. Some of these compounds were potent inhibitors of the five plasmepsins, and their possible binding modes were analyzed by computational methods.  相似文献   

14.
Since the characterization of genes encoding Ser/Thr-kinases and Tyr-kinases in bacteria, in 1991 and 1997, respectively, a growing body of evidence has been reported showing the important role of these enzymes in the regulation of bacterial physiology. While most Ser/Thr-kinases share structural similarity with their eukaryotic counterparts, it seems that bacteria have developed their own Tyr-kinases to catalyze protein phosphorylation on tyrosine. Different types of Tyr-kinases have been identified in bacteria and a large number of them are similar to ATP-binding proteins with Walker motifs. These enzymes have been grouped in the same family (BY-kinases) and the crystal structures of two of them have been recently characterized. Phosphoproteome analysis suggest that BY-kinases are involved in several cellular processes and to date, the best-characterized role of BY-kinases concerns the control of extracellular polysaccharide synthesis. Knowing the role of these compounds in the virulence of bacterial pathogens, BY-kinases can be considered as promising targets to combat some diseases. Here, we review the current knowledge on BY-kinases and discuss their potential for the development of new antibiotics.  相似文献   

15.
The search of protein targets involved in cancer has gained importance in the later years since cancer remains of the leading causes of death in the world. Histone deacetylase 8 (HDC8) play a key role in epigenetic regulation in cancer diseases. In addition, pyruvate kinase (PKM2) has been also identified overexpressed in cancer diseases.Since both targets are involved in cancer diseases, their crystal structures are available and their chemical moiety pharmacophores have been identified, we propose to design some drugs that could target both proteins. These bi-target compounds were submitted to theoretically ADMET analysis and docking studies in order to select the best-scored compounds. From the docking studies, it was possible to elucidate the residues that are involved in their binding recognition of PKM2 and HDC8. Such knowledge is of relevant importance since it will permit the design of new compounds that could effectively target and modulate these proteins that are critically involved in the pathology of cancer. Finally, the computational techniques permitted to select the most favourable compounds (A_4, A_7, A_10, D_6 and D_17), bringing new therapeutic perspectives by using these potential drugs.  相似文献   

16.
17.
The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been acknowledged for many years and validated by the clinical use of several drugs. Recently, the crystal structures of all but one of the enzymes in the pathway from GTP to dihydrofolate have been determined. Given that structure-based drug design strategies are now widely employed, these recent developments have prompted a re-evaluation of the potential of each of the enzymes in the pathway as a target for development of specific inhibitors. Here, we review the current knowledge of the structure and mechanism of each enzyme in the bacterial folic acid biosynthesis pathway from GTP to dihydrofolate and draw conclusions regarding the potential of each enzyme as a target for therapeutic intervention.  相似文献   

18.
Caspases are cysteine proteases that play a critical role in the initiation and regulation of apoptosis. These enzymes act in a cascade to promote cell death through proteolytic cleavage of intracellular proteins. Since activation of apoptosis is implicated in human diseases such as cancer and neurodegenerative disorders, caspases are targets for drugs designed to modulate their action. Active caspases are heterodimeric enzymes with two symmetrically arranged active sites at opposite ends of the molecule. A number of crystal structures of caspases with peptides or proteins bound at the active sites have defined the mechanism of action of these enzymes, but molecular information about the active sites before substrate engagement has been lacking. As part of a study of peptidyl inhibitors of caspase-3, we crystallized a complex where the inhibitor did not bind in the active site. Here we present the crystal structure of the unoccupied substrate-binding site of caspase-3. No large conformational differences were apparent when this site was compared with that in enzyme-inhibitor complexes. Instead, the 1.9 A structure reveals critical side chain movements in a hydrophobic pocket in the active site. Notably, the side chain of tyrosine204 is rotated by approximately 90 degrees so that the phenol group occupies the S2 subsite in the active site. Thus, binding of substrate or inhibitors is impeded unless rotation of this side chain opens the area. The positions of these side chains may have important implications for the directed design of inhibitors of caspase-3 or caspase-7.  相似文献   

19.
Herein, for the first time, we comparatively report the opening and closing of apo plasmepsin I – V. Plasmepsins belong the aspartic protease family of enzymes, and are expressed during the various stages of the P. falciparum lifecycle, the species responsible for the most lethal and virulent malaria to infect humans. Plasmepsin I, II, IV and HAP degrade hemoglobin from infected red blood cells, whereas plasmepsin V transport proteins crucial to the survival of the malaria parasite across the endoplasmic reticulum. Flap‐structures covering the active site of aspartic proteases (such as HIV protease) are crucial to the conformational flexibility and dynamics of the protein, and ultimately control the binding landscape. The flap‐structure in plasmepsins is made up of a flip tip in the N‐terminal lying perpendicular to the active site, adjacent to the flexible loop region in the C‐terminal. Using molecular dynamics, we propose three parameters to better describe the opening and closing of the flap‐structure in apo plasmepsins. Namely, the distance, d1, between the flap tip and the flexible region; the dihedral angle, ?, to account for the twisting motion; and the TriCα angle, θ1. Simulations have shown that as the flap‐structure twists, the flap and flexible region move apart opening the active site, or move toward each other closing the active site. The data from our study indicate that of all the plasmepsins investigated in the present study, Plm IV and V display the highest conformational flexibility and are more dynamic structures versus Plm I, II, and HAP. Proteins 2015; 83:1693–1705. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Aggrecanases are now believed to be the principal proteinases responsible for aggrecan degradation in osteoarthritis. Given their potential as a drug target, we solved crystal structures of the two most active human aggrecanase isoforms, ADAMTS4 and ADAMTS5, each in complex with bound inhibitor and one wherein the enzyme is in apo form. These structures show that the unliganded and inhibitor-bound enzymes exhibit two essentially different catalytic-site configurations: an autoinhibited, nonbinding, closed form and an open, binding form. On this basis, we propose that mature aggrecanases exist as an ensemble of at least two isomers, only one of which is proteolytically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号