首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effect on the partition of erythrocytes in a two phase aqueous polymer system based on dextran T500 and polyethylene glycol (PEG) 8000 of a combination of immunoaffinity ligands, namely, rabbit immunoglobulin G (IgG) and PEG 1900-modified monoclonal IgG, was examined as a potential cell separation technique. Several hybridoma lines secreting mouse monoclonal IgG specific for the Fc receptor of rabbit IgG were raised. The monoclonal IgG was modified by cyanuric chloride attachment of PEG 1900, causing the modified antibody to partition predominantly into the PEG-rich upper phase of the systems. The PEG-modified monoclonal IgG was used as an affinity ligand in the two phase polymer system to specifically increase the partition of rabbit anti-NN glycophorin IgG. The rabbit IgG was applied together with the PEG-modified monoclonal IgG to increase the partition of human erythrocytes. The same system had no effect on the partition of rabbit erythrocytes. These experiments demonstrate that a monoclonal antibody can be modified and used as a general reagent with which to alter cell partition in two phase aqueous polymer systems in an immunologically specific manner.  相似文献   

2.
The possibility of producing biospecific affinity ligands for separating cells in two polymer aqueous phase systems on the basis of cell surface antigens was investigated. Rabbit anti-human erythrocyte IgG was reacted with cyanuric chloride-activated monomethyl poly(ethylene glycol) (PEG) fractions (molecular weights approximately 200, 1900, and 5000) at various molar ratios of PEG to protein lysine groups. The partition coefficient of the protein in a Dextran/PEG two-phase system increased with increasing degree of modification and increasing PEG molecular weight. There was a concomitant loss in ability to agglutinate human erythrocytes. The ability of the modified IgG to bind to a DEAE-cellulose column was almost eliminated by reaction with the PEG 5000, and was decreased to a lesser extent by PEG 1900. This PEG 1900-modified IgG substantially increased the partition of fresh or fixed human erythrocytes into the PEG-rich phase of a suitable phase system, while having no effect on rabbit cell partition. The partition increase could be inhibited by unmodified anti-human red cell IgG but not by nonspecific unmodified human IgG, demonstrating that the ligand effects were specific for the cell type against which the antibody was raised. A mixture of rabbit and human erythrocytes, which ordinarily have very similar partitions in the phase systems used, could be separated on a countercurrent distribution apparatus using the modified IgG. These results demonstrate the feasibility of producing immunologically specific affinity partition ligands for cell separation.  相似文献   

3.
Surface plasmon resonance (SPR) immunobiosensor was developed for the detection of anti-glutamic acid decarboxylase (GAD) antibody. In this study, carboxylic terminated self-assembled monolayer, which was prepared by mixing of 3-mercaptopropionic acid (3-MPA) and 11-mercaptoundecanoic acid (11-MUA) (10:1 ratio), was used to evaluate the effect of external pH on the affinity between streptavidin and sensor surface. At pH values ranging from 4.0 to 5.5, it was found that streptavidin could more easily access onto the sensor surface at higher pH, and the enhanced binding of streptavidin at high pH allowed more extensive immobilization of biotin-GAD, which serves as the epitope for anti-GAD antibody. Consequently, the increase of RU caused by immuno-response between GAD and anti-GAD antibody was remarkably higher when streptavidin was bound on to the sensor surface at pH 5.5 than at pH 4.5. Therefore, we could conclude that the pH of coupling buffer greatly influences the sensitivity of immunosensor.  相似文献   

4.
Post-translational modifications can have a signification effect on antibody stability. A comprehensive approach is often required to best understand the underlying reasons the modification affects the antibody's potency or aggregation state. Monoclonal antibody 001 displayed significant variation in terms of potency, as defined by surface plasmon resonance testing (Biacore), from lot to lot independent of any observable aggregation or degradation, suggesting that a post-translational modification could be driving this variability. Analysis of different antibody lots using analytical hydrophobic interaction chromatography (HIC) uncovered multiple peaks of varying size. Electrospray ionization mass spectrometry (ESI-MS) indicated that the antibody contained a cysteinylation post-translational modification in complementarity-determining region (CDR) 3 of the antibody light chain. Fractionation of the antibody by HIC followed by ESI-MS and Biacore showed that the different peaks were antibody containing zero, one, or two cysteinylation modifications, and that the modification interferes with the ability of the modified antibody arm to bind antigen. Molecular modeling of the modified region shows that this oxidation of an unpaired cysteine in the antibody CDR would block a potential antigen binding pocket, suggesting an inhibition mechanism.  相似文献   

5.
In this paper we show that although immunoglobulins are easily precipitated in solutions containing polyethylene glycol (PEG), especially at pH's where the conformation of the proteins should be close to native, human and rabbit IgG can be solubilized in aqueous dextran/PEG two-phase systems containing glycine and sodium chloride at pH 7.0 and that human IgA and IgM can be solubilized in such systems if the pH is increased to 9.0. Liquid-liquid partition chromatography (LLPC) on Li-ParGel was used to separate immunoglobulins into subfractions. Human IgG, IgM, and IgA all gave three peaks in the system used. These results indicate the possibility of separating different classes of immunoglobulins with this method. Specific IgG antibodies isolated from a rabbit antiserum against human serum proteins gave only two peaks in the LLPC system while the total IgG population gave three, as did human IgG. Thus, partitioning of immunoglobulins seems to be related to antibody activity.  相似文献   

6.

Background

Autoantibodies to GAD65 (anti-GAD65) are present in the sera of 70–80% of patients with type 1 diabetes (T1D), but antibodies to the structurally similar 67 kDa isoform GAD67 are rare. Antibodies to GAD67 may represent a cross-reactive population of anti-GAD65, but this has not been formally tested.

Methodology/Principal Findings

In this study we examined the frequency, levels and affinity of anti-GAD67 in diabetes sera that contained anti-GAD65, and compared the specificity of GAD65 and GAD67 reactivity. Anti-GAD65 and anti-GAD67 were measured by radioimmunoprecipitation (RIP) using 125I labeled recombinant GAD65 and GAD67. For each antibody population, the specificity of the binding was measured by incubation with 100-fold excess of unlabeled GAD in homologous and heterologous inhibition assays, and the affinity of binding with GAD65 and GAD67 was measured in selected sera. Sera were also tested for reactivity to GAD65 and GAD67 by immunoblotting. Of the 85 sera that contained antibodies to GAD65, 28 contained anti–GAD67 measured by RIP. Inhibition with unlabeled GAD65 substantially or completely reduced antibody reactivity with both 125I GAD65 and with 125I GAD67. In contrast, unlabeled GAD67 reduced autoantibody reactivity with 125I GAD67 but not with 125I GAD65. Both populations of antibodies were of high affinity (>1010 l/mol).

Conclusions

Our findings show that autoantibodies to GAD67 represent a minor population of anti-GAD65 that are reactive with a cross-reactive epitope found also on GAD67. Experimental results confirm that GAD65 is the major autoantigen in T1D, and that GAD67 per se has very low immunogenicity. We discuss our findings in light of the known similarities between the structures of the GAD isoforms, in particular the location of a minor cross-reactive epitope that could be induced by epitope spreading.  相似文献   

7.
A biosensor chip utilizing surface plasmon resonance (SPR) was fabricated for detecting anti-glutamic acid decarboxylase (GAD) antibody, which is an indicator of the presence of type I diabetes mellitus. The sensor surfaces were constructed from various thiol mixtures of different molar ratios of 3-mercaptopropionic acid (3-MPA) to 11-mercaptoundecanoic acid (11-MUA). To determine the surface characteristics of the different alkanethiol monolayers, several quantitative and kinetic measurements were carried out. The extent of immobilization of streptavidin (SA) and biotin-GAD (the anti-GAD receptor) and the immune response of anti-GAD antibody against GAD were measured using the SPR biosensor. The terminal functional group of a thiol has different effects on the adsorption and covalent binding of protein depending on the steric hindrance. The protein chip described herein permits simple, rapid detection of anti-GAD antibody.  相似文献   

8.
To enhance the feasibility of surface plasmon resonance (SPR) immunosensor as a tool for diagnosing type I diabetes, we enhanced the sensitivity of immunoresponse for detecting the monoclonal anti-glutamic acid decarboxylase (GAD) antibody by modification of mixed self-assembled monolayers (SAMs). The effects of the different mixed SAMs were evaluated with respect to the degree of streptavidin immobilization, the degree of biotin-GAD immobilization, and the immunoresponse sensitivity. Consequently, the sensitivity of the immunoresponse for the detection of anti-GAD antibody was enhanced as a result of the reduction in steric hindrance brought about by using SAMs of heterogeneous lengths. The immunoresponse for detecting the monoclonal anti-GAD antibody was also enhanced with the reduction of the excess immobilization of biotin-GAD and the minimization of non-specific binding that resulted from the simple substitution of the spacer from a carboxylic-terminated SAM for the hydroxyl-terminated SAM.  相似文献   

9.
聚阳离子基因载体系统由于安全性好和便于设计等优点,近年来在基因治疗中的应用发展迅速.在进行基因药物的体内靶向输送时,目前国际上主要通过在基因输送系统中修饰聚乙二醇(PEG)和靶向分子来提高体内输送的稳定性和靶向性.PEG的修饰可能会遮蔽靶向分子的功能呈现,因此建立定量分析方法评价PEG修饰对靶向结合作用的影响非常重要.将连接有表皮生长因子(EGF)的聚赖氨酸(PLL)基因载体作为研究模型,建立BIAcore检测方法,比较PLL-EGF,PEG7000修饰的PLL-EGF,PEG20000修饰的PLL-EGF对表皮生长因子受体(EGFR)的结合和解离速率,评价PEG修饰对PLL-EGF靶向功能呈现的影响.结果表明,PEG7000的修饰降低了EGF和EGFR之间的结合速率,提高了解离速率,整体减弱了靶向分子的靶向结合能力.PEG20000的修饰进一步减弱靶向分子功能的呈现.因此在进行靶向型聚阳离子基因输送系统设计时,考察PEG修饰对靶向结合能力的影响程度非常重要.该研究结果也对其他基因载体系统的设计提供必要的参考.  相似文献   

10.
Monoclonal antibodies against rat brain GAD have been produced and immunochemically characterized in comparison with a traditional anti-GAD antiserum (Oertel et al., Neuroscience6, 2689–2700, 1981). An immunopurified fraction in which GAD represented an estimated 5% of the total protein was used as immunogen. Out of 10 mice injected with this fraction, 6 appeared to be immunized: their sera immunoprecipitated quantitatively GAD activity. Three cell fusions were performed between spleen cells of the best immunized mice and SP2/OAg14 myeloma cells. Around 500 hybridoma were generated in each hybridization experiment. The culture medium of 13 hybridoma significantly trapped GAD activity. All immunoprecipitation curves established with the ascitic fluid obtained from the positive hybridoma, showed a lower titer, at least 50-fold, than the titer of the conventional antiserum. None of these ascitic fluids was able to stain directly any protein from a rat high speed supernatant after western blotting. However, the electrophoretical analysis of the proteins immunotrapped by any of the monoclonal antibodies, followed by western blotting and immunolabelling with the anti-GAD antiserum (“cross-immunoblotting”) showed the same two stained monomers. They have the same molecular weight (respectively 59 and 62 kDa ± 2 kDa) as those stained directly by the anti-GAD antiserum from a rat brain supernatant. Although all monoclonal antibodies showed a lower affinity then the conventional antiserum, which prevents them from being used directly in immunoblotting they permit to definitively establish that the two monomers immunolabelled by the conventional antiserum are constitutive subunits of the rat brain GAD.  相似文献   

11.
The effects of AMP, fructose 6-phosphate (Fru-6-P), fructose 2,6-bisphosphate (Fru-2,6-P2), and paramagnetic ions on the aromatic region of the proton nuclear magnetic resonance (NMR) spectrum of rabbit liver fructose-1,6-bisphosphatase have been investigated at 300 MHz. Two well resolved peaks in this region of the NMR spectrum are assigned to the protons from the aromatic ring of a tyrosyl residue of the enzyme by chemical modification with tetranitromethane and by nuclear Overhauser effects. Nitration of the tyrosyl residue causes desensitization of the enzyme to AMP inhibition as well as the loss of activity. In the presence of AMP during the modifications, 1 tyrosyl residue could be protected, presumably the one observed by NMR. Binding of AMP, an allosteric inhibitor of the enzyme, to rabbit liver fructose-1,6-bisphosphatase leads to an upfield shift of the tyrosyl proton signals in the NMR spectrum. No chemical shift or line broadening could be detected in the presence of the paramagnetic manganous ion, Fru-2,6-P2, or Fru-6-P. The negative intramolecular nuclear Overhauser effect from the ribose H2' proton to the adenine H8 proton of AMP suggested that AMP binds to the enzyme with an anti conformation about the glycosidic bond. The failure to observe intermolecular nuclear Overhauser effects between the tyrosyl residue and the protons of AMP indicates that the distances between them are greater than 4 A. On the basis of these observations, it is suggested that the AMP-related tyrosyl residue may be close to the AMP binding site, but it is not directly involved in ligand binding. Rather, the protection of this tyrosyl residue by AMP as observed by chemical modification experiments may well be due to a conformational change that results from covalent modification of the enzyme.  相似文献   

12.
Type 1 diabetes results in most cases from the destruction of insulin-secreting beta cells by the immune system. Several immunization methods based on administration of autoantigenic polypeptides such as insulin and glutamic acid decarboxylase (GAD) have been used to prevent autoimmune diabetes in the non-obese diabetic (NOD) mouse. In the work presented here, a gene-based approach was taken for a similar purpose. A plasmid carrying different cDNAs was used to investigate the effects of injecting naked DNA on cyclophosphamide-accelerated diabetes in female NOD mice. Four-week-old animals received intramuscular injections of plasmid DNA encoding either intracellular GAD, a secreted form of GAD, or a secreted form of a soft coral luciferase. Monitoring of glycosuria and hyperglycemia indicated that injection of plasmid DNA encoding secreted GAD and secreted luciferase could prevent and delay diabetes, respectively. In contrast, injection of DNA encoding intracellular GAD did not suppress the disease significantly. Analysis of anti-GAD IgG(1) antibody titers in animal sera indicated that diabetes prevention after injection of GAD-encoding DNA was possibly associated with increased Th2-type activity. These results suggest that cellular localization of GAD is a factor to consider in the design of GAD-based genetic vaccines for the prevention of autoimmune diabetes.  相似文献   

13.
Abstract Western blot analysis (immunoblotting) of cell surface-associated proteins from Helicobacter pylori confirmed our previous findings that binding of human IgG is a common property (among H. pylori strains). Purification of the IgG-binding proteins (IGBP) was achieved by two purification steps, affinity chromatography on IgG-Sepharose and nickel chelate affinity chromatography. SDS-PAGE and immunoblotting analysis revealed a 60 kDa protein with affinity for peroxidase labeled human IgG. Solid phase binding assays showed that IgG binds to an immobilized protein (IGBP). The 60 kDa IGBP binds human IgG1, IgG3 and IgM. Binding could be inhibited by the kappa chain of the human IgG, but not with its Fc fragment, nor with IgA or IgM. In addition, rabbit polyclonal antibodies raised against the 60 kDa IGBP blocked IgG binding. Monoclonal antibodies, specific to the Hsp60 heat shock protein of H. pylori recognized the 60 kDa IGBP as revealed by immunoblotting analysis, both in crude preparations and in the purified fractions.  相似文献   

14.
Histone covalent modifications play a significant role in the regulation of chromatin structure and function during DNA damage. Hyperacetylation of histones is a DNA damage dependent post translational modification in yeast and mammals. Although acetylation of histones during DNA damage is well established, specific lysine residues that are acetylated is being understood very recently in mammals. Here, in the present study, acetylation of three different lysine residues Histone3Lysine 9 (H3K9), Histone3Lysine 56 (H3K56) and Histone4Lysine 16 (H4K16) were probed with specific antibodies in mammalian cell lines treated with genotoxic agents that induce replication stress or S-phase dependent double strand breaks. Immunoblotting results have shown that DNA damage associated with replication arrest induce acetylation of H3K56 and H4K16 but not H3K9 in mammals. Immunofluorescence experiments further confirmed that acetylated H3K56 and H4K16 form nuclear foci at the site of DNA double strand breaks. Colocalization of H3K56ac with γ H2AX and replication factor PCNA proved the existence of this modification at the site of DNA damage and its probable role in DNA damage repair. Put together, the present data suggests that acetylation of H3K56 and H4K16 are potent DNA damage dependent histone modifications but not H3K9 in mammals.  相似文献   

15.
Tolerance induction of autoreactive T cells against pancreatic beta cell-specific autoantigens such as glutamic acid decarboxylase 65 (GAD65) and insulin has been attempted as a method to prevent autoimmune diabetes. In this study, we investigate whether adenoassociated virus (AAV) gene delivery of multiple immunodominant epitopes expressing GAD(500-585) could induce potent immune tolerance and persistently suppress autoimmune diabetes in NOD mice. A single muscle injection of 7-wk-old female NOD mice with rAAV/GAD(500-585) (3 x 10(11) IU/mouse) quantitatively reduced pancreatic insulitis and efficiently prevented the development of overt type I diabetes. This prevention was marked by the inactivation of GAD(500-585)-responsive T lymphocytes, the enhanced GAD(500-585)-specific Th2 response (characterized by increased IL-4, IL-10 production, and decreased IFN-gamma production; especially elevated anti-GAD(500-585) IgG1 titer; and relatively unchanged anti-GAD(500-585) IgG2b titer), the increased secretion of TGF-beta, and the production of protective regulatory cells. Our studies also revealed that peptides 509-528, 570-585, and 554-546 in the region of GAD(500-585) played important roles in rAAV/GAD(500-585) immunization-induced immune tolerance. These data indicate that using AAV, a vector with advantage for therapeutic gene delivery, to transfer autoantigen peptide GAD(500-585), can induce immunological tolerance through active suppression of effector T cells and prevent type I diabetes in NOD mice.  相似文献   

16.
L-DOPA decarboxylase [DDC, aromatic-L-amino acid carboxyl-lyase, EC 4.1.1.28] was purified 800-fold from rat liver by several column chromatographic steps. The enzyme (specific activity, about 6 mumol/min X mg protein) had a molecular weight of 100,000 and gave a single band with a molecular weight of 50,000 on SDS-polyacrylamide gel electrophoresis. Its isoelectric point was pH 5.7. The absorption spectrum in the visible region of the purified DDC showed maxima at 330 and 420 nm. Polyclonal and monoclonal antibodies against DDC were produced by using this purified protein as an antigen. Polyclonal anti-DDC serum immunoprecipitated the DDC activities of rat, guinea-pig and rabbit livers (about 1, 10, and more than 100 microliter of antiserum, respectively, were required for 50% precipitation of 2 nmol/min of activity of these enzymes). The monoclonal antibody, named MA-1, belonged to the IgG1 subclass and immunoprecipitated the DDC activities of rat and guinea-pig livers to the same extent (about 0.5 micrograms of IgG was required to immunoprecipitate 2 nmol/min activity of each enzyme), but it did not affect the rabbit enzyme. The antibody MA-1 detected DDC molecules of both the purified enzyme and crude homogenate of rat liver blotted onto a nitrocellulose sheet. Immunohistochemically this antibody also stained specific neurons in the substantia nigra, raphe nucleus and locus coeruleus of rat brain.  相似文献   

17.
We have developed a novel approach to the analysis of antigenic (allotypic and idiotypic) determinants on intact immunoglobulin molecules. Immune complexes composed of IgG in combination with anti-idiotype or anti-allotype antibody were "visualized" by transmission electron microscopy. Individual Fab fragments of anti-idiotype or anti-allotype antibody, when bound to the IgG, altered the "Y" configuration in a reproducible and interpretable manner. Anti-idiotype antibody (either as Fab or IgG) bound to the terminus of the presumed V region of the IgG molecule, thus extending the apparent length of the Fab arms. Analysis of a rabbit VH framework allotype (a1) revealed that the determinant(s) is (are) located on the lateral portion of the V region of IgG. Binding of the anti-a1 Fab fragments was always at approximately right angles to the axis of the Fab arms of IgG. Fab antibody to the rabbit kappa light chain (b4) allotype bound to the lateral portion of the terminal half of the IgG Fab arms. This technique should be of value in localizing less well defined immunoglobulin determinants.  相似文献   

18.
Abstract— l -Glutamic acid decarboxylase (GAD) was isolated from bovine cerebellum and purified approx 32-fold by a combination of DEAE-Sephadex chromatography and gel filtration. This preparation was purified electrophoretically. Rabbit antiserum against the electrophoretically purified bovine GAD was found to react with the decarboxylase of bovine cerebellum and mouse brain. Examination of GAD enzyme specific activity at various postnatal ages of developing mouse brain showed that an initial rise in GAD activity occurs at 6 days postnatally. followed by a rapid increase in enzymatic activity which reaches a maximum at 28 days postnatally. Quantitative immunoprecipitation of mouse GAD by rabbit anti-GAD antisera indicated that the amount of GAD per brain increases 10-fold over the period between 1 and 28 days postnatally. This increase coincides closely with the GAD enzyme activity profile. Therefore, the increase in GAD enzyme specific activity during the postnatal development of mouse brain represents an increase in the absolute amount of GAD enzyme protein.  相似文献   

19.
Monoclonal antibody therapeutics is an important and fast expanding market. While production of these molecules has been a major area of research, much less is known regarding the stabilization of these proteins for delivery as drugs. Crystallization of antibodies is one such promising route for protein stabilization at high titers, and here we took a systematic approach to initiate crystallization through nucleation in a simple PEG (polyethylene glycol), protein in water solution. A ternary mixture of globular proteins, PEG, and water will undergo a liquid-liquid phase separation (LLPS) as shown in a phase diagram or a Binodal curve. Of particular interest within the phase diagram is the position of the critical point, which is where nucleation occurs most rapidly. Detailed LLPS maps were created by increasing concentrations of PEG (from 5% to 11%) and IgG (from 1 to 20 mg/mL). By increasing the molecular weight (MW) of PEG (and hence its radius of gyration) from 1,000 to 6,000 g/mol, the temperatures of the critical point of nucleation were shown to increase. Once these curves were determined, nucleation experiments were conducted close to a chosen critical point (10.5 mg/mL IgG in 11% PEG 1000) and after 3 weeks, crystals of IgG of approximately 100 microm in size were successfully formed. This is the first example of crystallization of an antibody through systematic mapping of LLPS curves, which is a fundamental step towards the scale-up of antibody crystallization.  相似文献   

20.
The effects of an incubation at low pH (during 20 h at 37 degrees) on the antibody activity and anticomplementary activity of rabbit IgG have been studied. Modifications have also been examined by physicochemical methods. The properties of rabbit anti-sheep red cell IgG are not modified by incubation at pH values between 7.4 and 4.0 during 20 h at 37 degrees. Below pH 4 a decrease of hemolytic activity is apparent concomitant with an important increase of the agglutinating activity. This phenomenon is due to the formation of polymers from native IgG. At pH values below 3.8 the anticomplementary activity of a nonspecific IgG decreases rapidly. One observes an increase of optical rotation, a finding which is compatible with the appearance of heavier compounds with sedimentation coefficients of 9.5 and 11.5 S, probably dimers of native IgG. The increase of optical rotation is partially reversible when the pH is readjusted to 7.4. The use of starch-gel and immunoelectrophoresis has shown the appearance of compounds with higher mobility which are closely related to a peptide (PEP III') which was isolated from a peptic hydrolysate of rabbit IgG. The decrease of anticomplementary activity of nonspecific IgG seems to be closely related to the liberation of PEP III'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号