首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured the lateral mobility of individual alpha5 integrin molecules in ventral plasma membranes of fibroblasts, which were prepared by removal of apical surfaces and nuclei followed by elimination of actin filaments with gelsolin, an actin-severing protein. The cytoplasmic domain of individual integrin molecules was tagged with 100 nm fluorescent polystyrene bead, and motion of the bead was observed and video-recorded. Position of the bead in each frame was determined from the centroid of the fluorescence image, from which plots of the mean-square displacement against time intervals were derived. Within short intervals of time (<100 ms) the mean-square displacement was proportional to the time interval, and the averaged translational diffusion coefficient of (5.3+/-4.4) x 10(-10) cm2/s was obtained with a broad distribution of (1.3-20) x 10(-10) cm2/s. The broad distribution might reflect the oligomerized state of integrin. The largest diffusion coefficient was comparable to that of lipid molecules previously measured in cells and probably represented the diffusion of a single integrin molecule in the presence of little interference of actin cytoskeleton or extracellular matrix. In longer time intervals (>100 ms) the motion of the bead was confined in an area, the average diameter of which was 410+/-160 nm. This was similar to the values described in previous reports, in which the motion of other membrane receptors labeled on their extracellular domain was measured in living cells.  相似文献   

2.
A fully hydrated dimiristoylphosphatidylcholine (DMPC) bilayer has been studied by a molecular dynamics simulation. The system, which consisted of 64 DMPC molecules and 1792 water molecules, was run in the NVE ensemble at a temperature of 333 K for a total of 10 ns. The resulting trajectory was used to analyze structural and dynamical quantities. The electron density, bilayer spacing, and order parameters (S(CD)), based on the AMBER forcefield and SPCE water model are in good agreement with previous calculations and experimental data. The simulation reveals evidence for two types of lateral diffusive behavior: cage hopping and that of a two-dimensional liquid. The lateral diffusion coefficient is 8 x 10(-8) cm(2)/s. We characterize the rotational motion, and find that the lipid tail rotation (D(rot_tail) = -0.04 rad(2)/ns) is slower then the head group rotation (D(rot_hg) = 2.2 rad(2)/ns), which is slower than the overall in plane (D(rot) = 3.2 rad(2)/ns) for the lipid molecule.  相似文献   

3.
DNA regions close to the origin of replication were visualized by the green fluorescent protein (GFP)-Lac repressor/lac operator system. The number of oriC-GFP fluorescent spots per cell and per nucleoid in batch-cultured cells corresponded to the theoretical DNA replication pattern. A similar pattern was observed in cells growing on microscope slides used for time-lapse experiments. The trajectories of 124 oriC-GFP spots were monitored by time-lapse microscopy of 31 cells at time intervals of 1, 2, and 3 min. Spot positions were determined along the short and long axis of cells. The lengthwise movement of spots was corrected for cell elongation. The step sizes of the spots showed a Gaussian distribution with a standard deviation of approximately 110 nm. Plots of the mean square displacement versus time indicated a free diffusion regime for spot movement along the long axis of the cell, with a diffusion coefficient of 4.3+/-2.6x10(-5) microm2/s. Spot movement along the short axis showed confinement in a region of the diameter of the nucleoid ( approximately 800 nm) with an effective diffusion coefficient of 2.9+/-1.7x10(-5) microm2/s. Confidence levels for the mean square displacement analysis were obtained from numerical simulations. We conclude from the analysis that within the experimental accuracy--the limits of which are indicated and discussed--there is no evidence that spot segregation requires any other mechanism than that of cell (length) growth.  相似文献   

4.
The particle weight (molecular weight) of phiNS11 was determined from the sedimentation coefficient, diffusion coefficient, and partial specific volume of the phage. The sedimentation coefficient of the phage (S(0)20, W) is 416 +/- 2.7S. The diffusion coefficient D(0)20, W), which was determined by quasielastic light scattering measurement, is (0.57 +/- 0.03) x 10(-7) cm2/s. The partial specific volume was determined by the mechanical oscillation technique to be 0.747 +/- 0.007 cm3/g. Based on these values, the particle weight of the phage was calculated to be (70.3 +/- 4.3) x 10(6) daltons, which agrees well with the particle weight (69--72 x 10(6) daltons) estimated from the molecular weight of phage DNA and the content of DNA. The Stokes radius of the phage particle was calculated to be 37.7 +/- 2 nm and hydration of the phage was estimated to be 1.18 cm3/g of dry phage. From the particle weight and the chemical composition of the phage, we estimated that one phage particle contains one double-stranded DNA molecule, 16,000 residues of fatty acid, 72 protein I molecules, 920 protein II, 42 protein III, 48 protein IV, 290 protein V molecules, and 3,700 molecules of polyamines.  相似文献   

5.
Single-molecule anisotropy imaging   总被引:1,自引:1,他引:0       下载免费PDF全文
A novel method, single-molecule anisotropy imaging, has been employed to simultaneously study lateral and rotational diffusion of fluorescence-labeled lipids on supported phospholipid membranes. In a fluid membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, in which the rotational diffusion time is on the order of the excited-state lifetime of the fluorophore rhodamine, a rotational diffusion constant, D(rot) = 7 x 10(7) rad(2)/s, was determined. The lateral diffusion constant, measured by direct analysis of single-molecule trajectories, was D(lat) = 3.5 x 10(-8) cm(2)/s. As predicted from the free-volume model for diffusion, the results exhibit a significantly enhanced mobility on the nanosecond time scale. For membranes of DPPC lipids in the L(beta) gel phase, the slow rotational mobility permitted the direct observation of the rotation of individual molecules characterized by D(rot) = 1.2 rad(2)/s. The latter data were evaluated by a mean square angular displacement analysis. The technique developed here should prove itself profitable for imaging of conformational motions of individual proteins on the time scale of milliseconds to seconds.  相似文献   

6.
The dynamic properties of water in the hydration shell of hemoglobin have been studied by means of dielectric permittivity measurements and nuclear magnetic resonance spectroscopy. The temperature behavior of the complex permittivity of hemoglobin solutions has been measured at 3.02, 3.98, 8.59, and 10.80 GHz. At a temperature of 298 K the average rotational correlation time tau of water within a hydration shell of 0.5-nm thickness is determined from the activation parameters to be 68 +/- 10 ps, which is 8-fold the corresponding value of bulk water. Solvent proton magnetic relaxation induced by electron-nuclear dipole interaction between hemoglobin bound nitroxide spin labels and water protons is used to determine the translational diffusion coefficient D(T) of the hydration water. The temperature dependent relaxation behavior for Lamor frequencies between 3 and 90 MHz yields an average value D(298K) = (5 +/- 2) x 10(-10)m2 s-1, which is about one-fifth of the corresponding value of bulk water. The decrease of the water mobility in the hydration shell compared to the bulk is mainly due to an enhanced activation enthalpy.  相似文献   

7.
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient.  相似文献   

8.
The lateral diffusion constants of 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine (POPC), water, and ibuprofen were measured in multilamellar liposomes using pulsed field gradient magic-angle spinning (PFG-MAS) (1)H NMR. The analysis of diffusion data obtained in powder samples and a method for liposome curvature correction are presented. At 322 K POPC has a diffusion constant of (8.6 +/- 0.2) x 10(-12) m(2)/s when dehydrated (8.2 waters/lipid) and (1.9 +/- 0.1) x 10(-11) m(2)/s in excess water. The diffusion constant of water in dehydrated POPC was found to be (4.7 +/- 0.1) x 10(-10) m(2)/s. The radius of curvature is 21 +/- 2 microm for the dehydrated sample and 4.5 +/- 0.5 microm for POPC sample containing excess water. The activation energies of diffusion are 40.6 +/- 0.4 kJ/mole for dehydrated POPC, 30.7 +/- 0.9 kJ/mole for POPC with excess water, and 28.6 +/- 1.5 kJ/mole for water in dehydrated POPC. The diffusion constants and activation energies for a sample of POPC/ibuprofen/water (1:0.56:15) were also measured. The ibuprofen, which locates in the lipid-water interface, diffuses faster than POPC but has a slightly higher activation energy of lateral diffusion. Within certain restrictions, PFG-MAS NMR provides a useful method for characterizing membrane organization and mobility.  相似文献   

9.
The possibility that LH receptors exist as isolated molecules when unbound and aggregate upon binding gonadotropins has previously been untestable in viable cells for want of a suitable nonhormone probe. We have now expressed in CHO cells an intrinsically-fluorescent LH receptor involving enhanced green fluorescent protein (GFP) fused to the C-terminus of the rat LH receptor (rLHR-GFP). More than half of these receptors (54 +/- 4%) are located on the plasma membrane and are functional: cAMP levels increase 3-5 fold in response to 10 nM LH or hCG. In fluorescence photobleaching recovery studies at 37 degrees C, 54 +/- 13% of unoccupied rLHR-GFP were laterally mobile with a diffusion coefficient D of 16 +/- 3.5 x 10(-10)cm2sec-1. Introduction of 10 nM LH for 1 h slowed receptor lateral diffusion to 6.6 +/- 1.3 x 10(-10)cm2sec-1 and reduced fluorescence recovery after photobleaching to 27 +/- 1%. Following treatment with 1 nM hCG, rLHR-GFP were laterally immobile and were distributed into small fluorescent patches over the cell surface. Thus, unoccupied rLHR-GFP receptors apparently exist as dispersed plasma membrane proteins with comparatively fast lateral diffusion. Interaction of receptors with LH or hCG caused clustering of rLHR-GFP receptors, significantly restricting lateral diffusion.  相似文献   

10.
A Kusumi  Y Sako    M Yamamoto 《Biophysical journal》1993,65(5):2021-2040
The movements of E-cadherin, epidermal growth factor receptor, and transferrin receptor in the plasma membrane of a cultured mouse keratinocyte cell line were studied using both single particle tracking (SPT; nanovid microscopy) and fluorescence photobleaching recovery (FPR). In the SPT technique, the receptor molecules are labeled with 40 nm-phi colloidal gold particles, and their movements are followed by video-enhanced differential interference contrast microscopy at a temporal resolution of 33 ms and at a nanometer-level spatial precision. The trajectories of the receptor molecules obtained by SPT were analyzed by developing a method that is based on the plot of the mean-square displacement against time. Four characteristic types of motion were observed: (a) stationary mode, in which the microscopic diffusion coefficient is less than 4.6 x 10(-12) cm2/s; (b) simple Brownian diffusion mode; (c) directed diffusion mode, in which unidirectional movements are superimposed on random motion; and (d) confined diffusion mode, in which particles undergoing Brownian diffusion (microscopic diffusion coefficient between 4.6 x 10(-12) and 1 x 10(-9) cm2/s) are confined within a limited area, probably by the membrane-associated cytoskeleton network. Comparison of these data obtained by SPT with those obtained by FPR suggests that the plasma membrane is compartmentalized into many small domains 300-600 nm in diameter (0.04-0.24 microns2 in area), in which receptor molecules are confined in the time scale of 3-30 s, and that the long-range diffusion observed by FPR can occur by successive movements of the receptors to adjacent compartments. Calcium-induced differentiation decreases the sum of the percentages of molecules in the directed diffusion and the stationary modes outside of the cell-cell contact regions on the cell surface (which is proposed to be the percentage of E-cadherin bound to the cytoskeleton/membrane-skeleton), from approximately 60% to 8% (low- and high-calcium mediums, respectively).  相似文献   

11.
An image-based technique of fluorescence recovery after photobleaching (video-FRAP) was used to measure the lateral diffusion coefficients of a series of nine fluorescent probes in two model lipid bilayer systems, dimyristoylphosphatidylcholine (DMPC) and DMPC/cholesterol (40 mol%), as well as in human stratum corneum-extracted lipids. The probes were all lipophilic, varied in molecular weight from 223 to 854 Da, and were chosen to characterize the lateral diffusion of small compounds in these bilayer systems. A clear molecular weight dependence of the lateral diffusion coefficients in DMPC bilayers was observed. Values ranged from 6.72 x 10(-8) to 16.2 x 10(-8) cm2/s, with the smaller probes diffusing faster than the larger ones. Measurements in DMPC/cholesterol bilayers, which represent the most thorough characterization of small-solute diffusion in this system, exhibited a similar molecular weight dependence, although the diffusion coefficients were lower, ranging from 1.62 x 10(-8) to 5.60 x 10(-8) cm2/s. Lateral diffusion measurements in stratum corneum-extracted lipids, which represent a novel examination of diffusion in this unique lipid system, also exhibited a molecular weight dependence, with values ranging from 0.306 x 10(-8) to 2.34 x 10(-8) cm2/s. Literature data showed that these strong molecular weight dependencies extend to even smaller compounds than those examined in this study. A two-parameter empirical expression is presented that describes the lateral diffusion coefficient in terms of the solute's molecular weight and captures the size dependence over the range examined. This study illustrates the degree to which small-molecule lateral diffusion in stratum corneum-extracted lipids can be represented by diffusion in DMPC and DMPC/cholesterol bilayer systems, and may lead to a better understanding of small-solute transport across human stratum corneum.  相似文献   

12.
Aquaporin-1 (AQP1) is the prototype integral membrane protein water channel. Although the three-dimensional structure and water transport function of the molecule have been described, the physical interactions between AQP1 and other membrane components have not been characterized. Using fluorescein isothiocyanate-anti-Co3 (FITC-anti-Co3), a reagent specific for an extracellular epitope on AQP1, the fluorescence photobleaching recovery (FPR) and fluorescence imaged microdeformation (FIMD) techniques were performed on intact human red cells. By FPR, the fractional mobility of fluorescently labeled AQP1 (F-alphaAQP1) in the undeformed red cell membrane is 66 +/- 10% and the average lateral diffusion coefficient is (3.1 +/- 0.5) x 10(-11) cm2/s. F-alphaAQP1 fractional mobility is not significantly affected by antibody-induced immobilization of the major integral proteins band 3 or glycophorin A, indicating that AQP1 does not exist as a complex with these proteins. FIMD uses pipette aspiration of individual red cells to create a constant but reversible skeletal density gradient. F-alphaAQP1 distribution, like that of lipid-anchored proteins, is not at equilibrium after microdeformation. Over time, approximately 50% of the aspirated F-alphaAQP1 molecules migrate toward the membrane portion that had been maximally dilated, the aspirated cap. Based on the kinetics of migration, the F-alphaAQP1 lateral diffusion coefficient in the membrane projection is estimated to be 6 x 10(-10) cm2/s. These results suggest that AQP1 lateral mobility is regulated in the unperturbed membrane by passive steric hindrance imposed by the spectrin-based membrane skeleton and/or by skeleton-linked membrane components, and that release of these constraints by dilatation of the skeleton allows AQP1 to diffuse much more rapidly in the plane of the membrane.  相似文献   

13.
The purpose of this study is to develop an apparatus for simultaneous measurement of electrical and spectroscopic parameters of single ion channels. We have combined the single channel recording apparatus with an artificial lipid bilayer and a fluorescence microscope designed to detect single fluorescent molecules. The artificial membranes were formed on an agarose-coated glass and observed with an objective-type total internal reflection fluorescence microscope (TIRFM). The lateral motion of a single lipid molecule (beta-BODIPY 530/550 HPC) was recorded. The lateral diffusion constant of the lipid molecule was calculated from the trajectories of single molecules as D = 8.5 +/- 4.9 x 10(-8) cm(2)/s. Ionic channels were incorporated into the membrane and current fluctuations were recorded at the single-channel level. After incorporation of Cy3-labeled alametithin molecules into the membrane, bright spots were observed moving rather slowly (D = 4.0 +/- 1.6 x 10(-8) cm(2)/s) in the membrane, simultaneously with the alametithin-channel current. These data show the possibility of the present technique for simultaneous measurement of electrical and spectroscopic parameters of single-channel activities.  相似文献   

14.
The motion of the cholestane spin label in oriented lecithin-cholesterol multibilayers is described in terms of a rotational diffusion about the long molecular axis with diffusion coefficient D parrell and a restricted random librational motion about axes perpendicular to the long axis with diffusion coefficient D1. The diffusion coefficients have been determined from the angular dependence of the ESR line shape at various temperatures and cholesterol contents. The temperature dependence of D parrell and D1 clearly shows the transition from the gel to liquid crystalline phase. Increasing amounts of cholesterol reduce the transition temperature. A strong reduction is found from o to 10 mole % cholesterol. At 50 mole % no longer a sharp transition is observed. In the temperature range from 40 to 80 degrees C the range of D is about 10 times larger than the range of D parrell, indicating a high activation energy for the librational motion arising from a strong hindrance by interaction with surrounding molecules. Cholesterol contents up to 10-20 mole % give an increase of D parrell and D1, arising from strong decrease of the transition temperature in this range. Above 10-20 mole % a reduction of D parrell and D1 is found. However, the effect of cholesterol is much stronger on D1 than on D parrell. In the liquid crystalline phase at about 60 degrees C the effect of cholesterol on D parrell is even negligible, while D1 strongly changes. This indicates that in the liquid crystalline phase only the librational motion is influenced by cholesterol, due to a denser packing of the molecules in the bilayer.  相似文献   

15.
Fluorescent derivatives of a human MHC class I glycoprotein, HLA-A2, were reconstituted into dimyristoylphosphatidylcholine (DMPC) liposomes. Measurements of lateral diffusion of fluorescein-(Fl-) labeled HLA-A2 by fluorescence photobleaching recovery (FPR), of rotational diffusion of erythrosin-(Er-) labeled HLA-A2 by time-resolved phosphorescence anisotropy (TPA), and of molecular proximity by flow cytometric fluorescence resonance energy transfer (FCET) showed that these class I MHC molecules self-associate in liposome membranes, forming small aggregates even at low surface concentrations. The lateral diffusion coefficient (Dlat) of Fl-HLA-A2 decreases with increasing surface protein concentration over a range of lipid:protein molar ratios (L/P) between 8000:1 and 2000:1. The reduction in Dlat of HLA molecules in DMPC liposomes is found to be sensitive to time and temperature. The rotational correlation time for Er-HLA-A2 in DMPC liposomes at 30 degrees C is 87 +/- 0.8 microseconds, at least 10 times larger than that expected for an HLA monomer. There is also significant quenching of donor (Fl-HLA) fluorescence at 37 degrees C in the presence of acceptor-labeled (sulforhodamine-labeled HLA) protein indicating proximity between HLA molecules even at L/P = 4000:1. FPR and FCET measurements with another membrane glycoprotein, glycophorin, give no evidence for its self-association. HLA aggregation measured by FPR, FCET, and TPA was blocked by beta 2-microglobulin, b2m, added to the liposomes. The aggregation of HLA-A2 molecules is not an artifact of their reconstitution into liposomes. HLA aggregates, defined by FCET, were readily detected on the surface of human lymphoblastoid (JY) cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the present study, the physiochemical properties of rat liver mitochondrial ribosomes were examined and compared with Escherichia coli ribosomes. The sedimentation and translational diffusion coefficients as well as the molecular weight and buoyant density of rat mitochondrial ribosomes were determined. Sedimentation coefficients were established using the time-derivative algorithm (Philo, J. S. (2000) Anal. Biochem. 279, 151-163). The sedimentation coefficients of the intact monosome, large subunit, and small subunit were 55, 39, and 28 S, respectively. Mitochondrial ribosomes had a particle composition of 75% protein and 25% RNA. The partial specific volume was 0.688 ml/g, as determined from the protein and RNA composition. The buoyant density of formaldehyde-fixed ribosomes in cesium chloride was 1.41 g/cm(3). The molecular masses of mitochondrial and E. coli ribosomes determined by static light-scattering experiments were 3.57 +/- 0.14 MDa and 2.49 +/- 0.06 MDa, respectively. The diffusion coefficient obtained from dynamic light-scattering measurements was 1.10 +/- 0.01 x 10(-7) cm(2) s(-1) for mitochondrial ribosomes and 1.72 +/- 0.03 x 10(-7) cm(2) s(-1) for the 70 S E. coli monosome. The hydration factor determined from these hydrodynamic parameters were 4.6 g of water/g of ribosome and 1.3 g/g for mitochondrial and E. coli ribosomes, respectively. A calculated hydration factor of 3.3 g/g for mitochondrial ribosomes was also obtained utilizing a calculated molecular mass and the Svedberg equation. These measurements of solvation suggest that ribosomes are highly hydrated structures. They are also in agreement with current models depicting ribosomes as porous structures containing numerous gaps and tunnels.  相似文献   

17.
A relatively simple method for the determination of the diffusion coefficient of a substance that has been injected into tissue is described. We illustrate this method using [3]dexamethasone injected into the subcutaneous tissue of rats. Digital autoradiography was used to measure the distribution of the [3H] dexamethasone within the subcutaneous tissue at 2.5 and 20 min after injection. Measured concentration profiles of the injection were compared to a mathematical model of drug diffusion from an injection. There was good agreement between the experimental data and the mathematical model. The diffusion coefficient found using this simple injection method was (4.01 +/- 2.01) x 10(-10) m2/s. This D value was very close to the value of D = (4.11 +/- 1.77) x 10(-10) m2/s found previously using different mathematical and experimental techniques with osmotic pumps implanted for 6, 24, and 60 h in rats (1). The simple method given here for the determination of the diffusion coefficient is general enough to be applied to other substances and tissues as well.  相似文献   

18.
Fluorescence depolarization techniques are used to determine the molecular order and reorientational dynamics of the probe molecule TMA-DPH embedded in the lamellar L alpha and the hexagonal HII phases of lipid/water mixtures. The thermotropically induced L alpha----HII phase transition of the lipid DOPE is used to obtain macroscopically aligned samples in the hexagonal HII phase at 45 degrees C from samples prepared in the lamellar L alpha phase at 7 degrees C. The interpretation of angle-resolved fluorescence depolarization experiments on these phases, within the framework of the rotational diffusion model, yields the order parameters (P2) and (P4), and the diffusion constants for the reorientational motions. The reorientational motion rates of the TMA-DPH molecules in the hexagonal HII phase are comparable with those in the lamellar L alpha phase. Furthermore, the lateral diffusion of the probe molecule on the surface of the lipid/water cylinder in the hexagonal phase is found to be considerably slower than the reorientational motion.  相似文献   

19.
Results have been obtained on the quasi-elastic spectra of neutrons scattered from pure water, a 20% agarose gel (hydration four grams H2O per gram of dry solid) and cysts of the brine shrimp Artemia for hydrations between 0.10 and 1.2 grams H2O per gram of dry solids. The spectra were interpreted using a two-component model that included contributions from the covalently bonded protons and the hydration water, and a mobile water fraction. The mobile fraction was described by a jump-diffusion correlation function for the translation motion and a simple diffusive orientational correlation function. The results for the line widths gamma (Q2) for pure water were in good agreement with previous measurements. The agarose results were consistent with NMR measurements that show a slightly reduced translational diffusion for the mobile water fraction. The Artemia results show that the translational diffusion coefficient of the mobile water fraction was greatly reduced from that of pure water. The line width was determined mainly by the rotational motion, which was also substantially reduced from the pure water value as determined from dielectric relaxation studies. The translational and rotational diffusion parameters were consistent with the NMR measurements of diffusion and relaxation. Values for the hydration fraction and the mean square thermal displacement [u2] as determined from the Q-dependence of the line areas were also obtained.  相似文献   

20.
We present results from an extensive molecular dynamics simulation study of water hydrating the protein Ribonuclease A, at a series of temperatures in cluster, crystal, and powder environments. The dynamics of protein hydration water appear to be very similar in crystal and powder environments at moderate to high hydration levels. Thus, we contend that experiments performed on powder samples are appropriate for discussing hydration water dynamics in native protein environments. Our analysis reveals that simulations performed on cluster models consisting of proteins surrounded by a finite water shell with free boundaries are not appropriate for the study of the solvent dynamics. Detailed comparison to available x-ray diffraction and inelastic neutron-scattering data shows that current generation force fields are capable of accurately reproducing the structural and dynamical observables. On the time scale of tens of picoseconds, at room temperature and high hydration, significant water translational diffusion and rotational motion occur. At low hydration, the water molecules are translationally confined but display appreciable rotational motion. Below the protein dynamical transition temperature, both translational and rotational motions of the water molecules are essentially arrested. Taken together, these results suggest that water translational motion is necessary for the structural relaxation that permits anharmonic and diffusive motions in proteins. Furthermore, it appears that the exchange of protein-water hydrogen bonds by water rotational/librational motion is not sufficient to permit protein structural relaxation. Rather, the complete exchange of protein-bound water molecules by translational displacement seems to be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号