首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of progesterone receptor (PR) in uterine stroma (endometrial stroma plus myometrium) by estrogen was investigated in estrogen receptor-alpha (ERalpha) knockout (alphaERKO) mice. 17 beta-Estradiol (E(2)) increased PR levels in uterine stroma of ovariectomized alphaERKO mice, and ICI 182 780 (ICI) inhibited this E(2)-induced PR expression. Estrogen receptor-beta(ER beta) was detected in both uterine epithelium and stroma of wild-type and alphaERKO mice by immunohistochemistry. In organ cultures of alphaERKO uterus, both E(2) and diethylstilbestrol induced stromal PR, and ICI inhibited this induction. These findings suggest that estrogen induces stromal PR via ERbeta in alphaERKO uterus. However, this process is not mediated exclusively by ERbeta+, because in ERbeta knockout mice, which express ERalpha, PR was up-regulated by E(2) in uterine stroma. In both wild-type and alphaERKO mice, progesterone and mechanical traumatization were essential and sufficient to induce decidual cells, even though E(2) and ERalpha were also required for increase in uterine weight. Progesterone receptor was strongly expressed in decidual cells in alphaERKO mice, and ICI did not inhibit decidualization or PR expression. This study suggests that up-regulation of PR in endometrial stroma is mediated through at least three mechanisms: 1) classical estrogen signaling through ERalpha, 2) estrogen signaling through ERbeta, and 3) as a result of mechanical stimulation plus progesterone, which induces stromal cells to differentiate into decidual cells. Each of these pathways can function independently of the others.  相似文献   

2.
Regulation of progesterone receptor (PR) by estradiol-17beta (E(2)) in mouse uterine and vaginal epithelia was studied. In ovariectomized mice, PR expression was low in both vaginal stroma and epithelium, but high in uterine epithelium. E(2) induced PR in vaginal epithelium and stroma, but down-regulated PR in uterine epithelium. Analysis of estrogen receptor alpha (ERalpha) knockout (ERKO) mice showed that ERalpha is essential for E(2)-induced PR expression in both vaginal epithelium and stroma, and for E(2)-induced down-regulation, but not constitutive expression of PR in uterine epithelium. Regulation of PR by E(2) was studied in vaginal and uterine tissue recombinants made with epithelium and stroma from wild-type and ERKO mice. In the vaginal tissue recombinants, PR was induced by E(2) only in wild-type epithelium and/or stroma. Hence, in vagina, E(2) induces PR directly via ERalpha within the tissue. Conversely, E(2) down-regulated epithelial PR only in uterine tissue recombinants constructed with wild-type stroma. Therefore, down-regulation of uterine epithelial PR by E(2) requires stromal, but not epithelial, ERalpha. In vitro, isolated uterine epithelial cells retained a high PR level with or without E(2), which is consistent with an indirect regulation of uterine epithelial PR in vivo. Thus, E(2) down-regulates PR in uterine epithelium through paracrine mechanisms mediated by stromal ERalpha.  相似文献   

3.
Histoarchitectural changes of the uterine cervix allow its successful adaptation to different physiological conditions. In this study, we evaluated cell turnover in each cellular compartment of the uterine cervix in association with steroid hormone receptor expression in order to establish the range of physiological changes. Proliferation, apoptosis, and progesterone receptor (PR) and estrogen receptor alpha (ERalpha) expression were evaluated in cycling, pregnant, and postpartum rats. In estrus and diestrus II, ERalpha and PR expression exhibited variations according to the region evaluated. Proliferation and apoptosis showed a reciprocal pattern, the epithelium being the region with higher cell turnover. High apoptotic index (AI) in estrus was associated with the lowest ERalpha and the highest PR scores. During pregnancy, proliferation of the epithelium was the predominant event and AI was low. On Postpartum Day 1 (PPD1), proliferation decreased while apoptosis increased. As described for the estrous cycle, during pregnancy and PPD1, AI and ERalpha were negatively correlated. In the fibroblastic stroma, low proliferation was observed throughout pregnancy; however, there was a net increase in cell number because very few cells underwent apoptosis. No difference in ERalpha was observed in fibroblastic cells during pregnancy and postpartum; however, a great decrease of this receptor in the epithelial compartment was observed after delivery. Unlike cervical epithelium, PR was highly expressed in stromal cells. At term, a dramatic increase in epithelial PR was observed. While epithelial PR remained high on PPD1, a decrease was observed in muscle stroma. These results show that, in all stages studied, 1) ERalpha and PR have different patterns of expression with differential responses to signals that modulate proliferation and/or apoptosis depending on the cellular compartment, and 2) even though the epithelium is the region with the highest cell turnover, the fibroblastic and muscle stroma are active regions that have their own patterns of behavior.  相似文献   

4.
5.
In rodent uterus, both up- and down-regulation of estrogen receptor alpha (ERalpha) messenger ribonucleic acid (mRNA) and protein levels by estradiol has been demonstrated; however, it is not known which of the uterine compartments (endometrial epithelium, stroma, myometrium) respond to estradiol with autoregulation of ERalpha. The purpose of the present study was to investigate and compare the kinetics and cell type-specific effects of estradiol on uterine ERalpha expression in immature and adult rats. Ovariectomized female rats were injected s.c. with sesame oil or estradiol-17beta. Uteri were collected and analyzed for changes in ERalpha mRNA using RNase protection assays (RPA) and in situ hybridization using radiolabeled probes specific for ERalpha. Immunohistochemical analysis was performed with a polyclonal antibody specific to ERalpha. Expression of ERalpha in the uterine epithelial cells decreased at 3 and 6 h after estradiol administration to immature and adult rats, respectively. At 24 h, ERalpha mRNA levels in the immature and mature rat uterus were higher than pretreatment levels but returned to baseline by 72 h. Pretreatment with cycloheximide did not block the 3-h repressive effect of estradiol, suggesting that the estradiol-induced decrease in ERalpha mRNA occurs independent of new protein synthesis. A decrease in ERalpha mRNA and protein was also observed in uterine epithelia at 3 and 6 h after an estradiol injection to immature and adult rats, and intensity of both the in situ hybridization signal and the immunostaining in the epithelium increased at 24 and 72 h. However, the periluminal stromal cells in the adult uterus and the majority of stromal cells of the immature uterus appeared to have increased ERalpha expression. The results indicate that down-regulation of ERalpha in the epithelia and up-regulation of stromal ERalpha play a role in early events associated with estradiol-induced cell proliferation of the uterine epithelia.  相似文献   

6.
Estrogen induces proliferation of uterine epithelium through a paracrine action of estrogen receptor (ERalpha) in the underlying stroma. In ovariectomized mice primed with progesterone, estrogen stimulates proliferation in both the epithelium and the stroma. We set out to test whether a paracrine mode of action is involved in estrogen-induced proliferation of the uterine stroma. Epithelial and mesenchymal tissues derived from uteri of neonatal ERalpha null mice (ERalphaKO) or wild-type mice were separated and recombined in all four possible configurations (ERalpha+ or ERalpha- epithelium with ERalpha+ or ERalpha- mesenchyme) and grafted into female athymic mice. After 5 wk, hosts were ovariectomized and challenged with hormone treatment, and cellular proliferation was monitored by thymidine autoradiography. Results showed that, although the full response of the epithelium was dependent on an ERalpha-positive mesenchyme, stromal cell proliferation was independent of tissue ERalpha. This latter observation suggests that the response of the stroma was due to a systemic factor induced in the ERalpha-positive hosts. To test this possibility, pieces of whole uterus from neonatal wild-type or ERalphaKO mice were grafted into syngeneic wild-type or ERalphaKO hosts. In these whole-uterus grafts, estradiol stimulated ERalphaKO uterine stroma when they were grown in wild-type hosts but not when grown in ERalphaKO hosts. The epithelium of whole-uterus ERalphaKO grafts did not respond to estrogen, regardless of the host phenotype. These observations suggest that treatment of progesterone-primed mice with estradiol stimulates production of a systemic factor that is capable of inducing uterine stromal cell proliferation and that this systemic factor is produced by an ERalpha-dependent mechanism.  相似文献   

7.
During organogenesis, the middle to caudal portion of Müllerian epithelium differentiates into uterine and vaginal epithelia in females. Functional differentiation of uterine and vaginal epithelia occurs in adulthood, and is regulated by 17beta-estradiol (E(2)) and progesterone. In this report, the roles of mesenchyme/stroma in differentiation of uterine and vaginal epithelia were studied in tissue recombination experiments. At birth, Müllerian epithelium was negative for uterine and vaginal epithelial markers. Tissue recombinant experiments showed that uterine and vaginal gene expression patterns were induced in neonatal Müllerian epithelium by the respective mesenchymes. Differentiated adult uterine and vaginal epithelia did not change their original gene expression in response to heterotypic mesenchymal induction. In the adult vagina, E(2) induced expression of involucrin, a CCAAT/enhancer-binding protein beta and cytokeratin 1 via estrogen receptor alpha (ERalpha). Tissue recombination experiments with wild-type and ERalpha knockout mice demonstrated that epithelial gene expression is regulated by E(2) via epithelial-stromal tissue interactions. Uterine/vaginal heterotypic tissue recombinations demonstrated that functional differentiation of uterine and vaginal epithelia required organ-specific stromal factors. In contrast, stromal signals regulating epithelial proliferation appeared to be nonspecific in the uterus and vagina.  相似文献   

8.
9.
In combination with androgens, estrogens can induce aberrant growth and malignancy of the prostate gland. Estrogen action is mediated through two receptor subtypes: estrogen receptors alpha (ERalpha) and beta (ERbeta). Wild-type (wt) and transgenic mice lacking a functional ERalpha (alphaERKO) or ERbeta (betaERKO) were treated with the synthetic estrogen diethylstilbestrol (DES). DES induced prostatic squamous metaplasia (SQM) in wt and betaERKO but not in alphaERKO mice, indicating an essential role for ERalpha, but not ERbeta, in the induction of SQM of prostatic epithelium. In order to determine the respective roles of epithelial and stromal ERalpha in this response, the following tissue recombinants were constructed with prostatic epithelia (E) and stroma (S) from wt and ERKO mice: wt-S+wt-E, alphaERKO-S+alphaERKO-E, wt-S+alphaERKO-E, and alphaERKO-S+wt-E. A metaplastic response to DES was observed in wt-S+wt-E tissue recombinants. This response to DES involved multilayering of basal epithelial cells, expression of cytokeratin 10, and up-regulation of the progesterone receptor. Tissue recombinants containing alphaERKO-E and/or -S (alphaERKO-S+alphaERKO-E, wt-S+alphaERKO-E, and alphaERKO-S+wt-E) failed to respond to DES. Therefore, full and uniform epithelial SQM requires ERalpha in the epithelium and stroma. These results provide a novel insight into the cell-cell interactions mediating estrogen action in the prostate via ERalpha.  相似文献   

10.
Hoxa-10 is an AbdominalB-like homeobox gene that is expressed in the developing genitourinary tract during embryogenesis and in the adult uterus during early pregnancy. Null mutation of Hoxa-10 in the mouse causes both male and female infertility. Defective implantation and decidualization resulting from the loss of maternal Hoxa-10 function in uterine stromal cells is the cause of female infertility. However, the mechanisms by which Hoxa-10 regulates these uterine events are unknown. We have identified two potential mechanisms for these uterine defects in Hoxa-10(-/-) mice. First, two PGE2 receptor subtypes, EP3 and EP4, are aberrantly expressed in the uterine stroma in Hoxa-10(-/-) mice, while expression of several other genes in the stroma (TIMP-2, MMP-2, ER, and PR) and epithelium (LIF, HB-EGF, Ar, and COX-1) are unaffected before implantation. Further, EP3 and EP4 are inappropriately regulated by progesterone (P4) in the absence of Hoxa-10, while PR, Hoxa-11 and c-myc, three other P4-responsive genes respond normally. These results suggest that Hoxa-10 specifically mediates P4 regulation of EP3 and EP4 in the uterine stroma. Second, since Hox genes are implicated in local cell proliferation, we also examined steroid-responsive uterine cell proliferation in Hoxa-10(-/-) mice. Stromal cell proliferation in mutant mice in response to P4 and 17beta-estradiol (E2 was significantly reduced, while epithelial cell proliferation was normal in response to E2. These results suggest that stromal cell responsiveness to P4 with respect to cell proliferation is impaired in Hoxa-10(-/-) mice, and that Hoxa-10 is involved in mediating stromal cell proliferation. Collectively, these results suggest that Hoxa-10 mutation causes specific stromal cell defects that can lead to implantation and decidualization defects apparently without perturbing epithelial cell functions.  相似文献   

11.
12.
Canonical Wnt signaling is critical to estrogen-mediated uterine growth   总被引:1,自引:0,他引:1  
Major biological effects of estrogen in the uterus are thought to be primarily mediated by nuclear estrogen receptors, ERalpha and ERbeta. We show here that estrogen in an ER-independent manner rapidly up-regulates the expression of Wnt4 and Wnt5a of the Wnt family and frizzled-2 of the Wnt receptor family in the mouse uterus. One of the mechanisms by which Wnts mediate canonical signaling involves stabilization of intracellular beta-catenin. We observed that estrogen treatment prompts nuclear localization of active beta-catenin in the uterine epithelium. We also found that adenovirus mediated in vivo delivery of SFRP-2, a Wnt antagonist, down-regulates estrogen-dependent beta-catenin activity without affecting some of the early effects (water imbibition and angiogenic markers) and inhibits uterine epithelial cell growth, suggesting that canonical Wnt signaling is critical to estrogen-induced uterine growth. Our present results provide evidence for a novel role of estrogen that targets early Wnt/beta-catenin signaling in an ER-independent manner to regulate the late uterine growth response that is ER dependent.  相似文献   

13.
Measurements performed using cell lines or animal tissues have shown that the progesterone receptor (PR) can be induced by estrogens. By use of immunohistochemistry we studied the effects of estrogens on the PR levels in the individual cell types of the target organs uterus and breast. In the uteri of rats, ovariectomy induced a decrease in PR immunoreactivity within the myometrium and outer stromal cell layers. In contrast, in the uterine luminal and glandular epithelium and surrounding stromal cell layers the PR immunoreactivity was significantly enhanced. The same picture emerged when intact rats were treated with the pure estrogen receptor antagonist, ZM 182780 (10 mg/kg/d). Treatment of ovariectomized rats with estradiol resulted in high PR levels in the myometrium and stroma cells but low PR immunoreactivity in the epithelial cells. The ER-mediated repression of the PR immunoreactivity was evidently restricted to the uterine epithelium, as we found that in the epithelial cells of the mammary gland and in cells of N-nitrosomethylurea-induced mammary carcinomas the PR expression was induced by estrogens and was blocked by the pure antiestrogen ZM 182780. These results clearly show that in the rat the activated ER induces diverging effects on PR expression in different cell types even within the same organ.  相似文献   

14.
In order for a successful pregnancy to occur, the embryo must attach to the luminal epithelial cells and invade into the stroma. Then, the surrounding stromal cells need to undergo decidualization in order to establish the vasculature necessary for survival of the embryo. These events in early pregnancy are tightly regulated by the steroid hormones, estrogen (E2) and progesterone (P4), through their cognate receptors, the estrogen receptor (ER) and the progesterone receptor (PR), respectively. Using a mouse model in which the PR has been ablated, it was demonstrated that the PR is necessary for embryo implantation and decidualization. Therefore, understanding the mechanism of PR action in the adult uterus is necessary in order to understand the events of early pregnancy. Insights from both mouse models and human samples have been integral in elucidating uterine PR action. These studies have shown that not only PR target genes, but also mediators of PR action are important for correct PR action in early pregnancy. Many of the genes involved in PR action in early pregnancy have also been shown to have roles in uterine diseases such as endometriosis and endometrial cancer. Therefore, the integration of mouse and human studies on PR action in the uterus will be important for the future understanding of uterine diseases and in the development of treatment for these diseases.  相似文献   

15.
The cell surface proteoglycan, syndecan, exhibits molecular and histological dimorphism in the mouse uterus and vagina. In the mature vagina, syndecan is localized at the surfaces of the basal and intermediate cells of the stratified epithelium and has a modal molecular mass of ca. 92 kDa. The uterus expresses a larger form of syndecan (ca. 110 kDa) which is detected at the basolateral surfaces of the simple columnar epithelial cells. We have investigated whether epithelial-mesenchymal interactions influence the expression of syndecan in these organs by analyzing tissue recombinants composed of mouse epithelium and rat mesenchyme or vice versa with monoclonal antibody 281-2, which recognizes mouse syndecan. In tissue recombinants composed of newborn mouse uterine epithelium and rat vaginal stroma, the uterine epithelium was induced to form a stratified vaginal epithelium which expressed syndecan in same the pattern and mass typical of vaginal epithelium. Likewise, rat uterine stroma induced newborn mouse vaginal epithelium to undergo uterine development, and this epithelium exhibited a uterine pattern of syndecan expression. Although stromal cells normally express little syndecan in most adult organs, analysis of recombinants composed of mouse stroma and rat epithelium revealed that both uterine and vaginal mouse stromata synthesized syndecan that was larger (ca. 170-190 kDa) than the epithelial syndecans. A quantitative increase in the amount of stromal syndecan was evident when stroma was grown in association with epithelium in comparison to stroma grown by itself. These data suggest that epithelial-mesenchymal interactions influence the amount, localization, and mass of both epithelial and stromal syndecan.  相似文献   

16.
In order for a successful pregnancy to occur, the embryo must attach to the luminal epithelial cells and invade into the stroma. Then, the surrounding stromal cells need to undergo decidualization in order to establish the vasculature necessary for survival of the embryo. These events in early pregnancy are tightly regulated by the steroid hormones, estrogen (E2) and progesterone (P4), through their cognate receptors, the estrogen receptor (ER) and the progesterone receptor (PR), respectively. Using a mouse model in which the PR has been ablated, it was demonstrated that the PR is necessary for embryo implantation and decidualization. Therefore, understanding the mechanism of PR action in the adult uterus is necessary in order to understand the events of early pregnancy. Insights from both mouse models and human samples have been integral in elucidating uterine PR action. These studies have shown that not only PR target genes, but also mediators of PR action are important for correct PR action in early pregnancy. Many of the genes involved in PR action in early pregnancy have also been shown to have roles in uterine diseases such as endometriosis and endometrial cancer. Therefore, the integration of mouse and human studies on PR action in the uterus will be important for the future understanding of uterine diseases and in the development of treatment for these diseases.  相似文献   

17.
Although it is known that, in the uterus, estrogen receptor alpha (ERalpha) is involved in proliferation and progesterone receptor in differentiation, the role of the two other gonadal-hormone receptors expressed in the uterus, androgen receptor (AR) and estrogen receptor beta (ERbeta), remains undefined. In this study, the involvement of AR in 17beta-estradiol (E(2))-induced cellular proliferation in the immature rat uterus was investigated. AR levels were low in the untreated immature uterus, but 24 h after treatment of rats with E(2), there was an increase in the levels of AR and of two androgen-regulated genes, IGF-I and Crisp (cysteine-rich secretory protein). As expected, E(2) induced proliferation of luminal epithelial cells. These actions of E(2) were all blocked by both the antiestrogen tamoxifen and the antiandrogen flutamide. The E(2)-induced AR was found by immunohistochemistry to be localized exclusively in the stroma, mainly in the myometrium, where it colocalized with ERalpha but not with ERbeta. ERbeta, detected with two different ERbeta-specific antibodies, was expressed in both stromal and epithelial cells either alone or together with ERalpha. Treatment with E(2) caused down-regulation of ERalpha and ERbeta in the epithelium. The data suggest that, in E(2)-induced epithelial cell proliferation, ERalpha induces stromal AR and AR amplifies the ERalpha signal by induction of IGF-I. Because AR is never expressed in cells with ERbeta, it is unlikely that ERbeta signaling is involved in this pathway. These results indicate an important role for AR in proliferation of the uterus, where estrogen and androgen do not represent separate pathways but are sequential steps in one pathway.  相似文献   

18.
Postnatal development of the ovine uterus between birth and Postnatal Day (PND) 56 involves differentiation of the endometrial glandular epithelium from the luminal epithelium followed by tubulogenesis and branching morphogenesis. These critical events coincide with expression of estrogen receptor alpha (ERalpha) by nascent endometrial glands and stroma. To test the working hypothesis that estrogen and uterine ERalpha regulate uterine growth and endometrial gland morphogenesis in the neonatal ewe, ewes were treated daily from birth (PND 0) to PND 55 with 1) saline and corn oil as a vehicle control (CX), 2) estradiol-17 beta (E2) valerate (EV), an ERalpha agonist, 3) EM-800, an ERalpha antagonist, or 4) CGS 20267, a nonsteroidal aromatase inhibitor. On PND 14, ewes were hemihysterectomized, and the ipsilateral oviduct and ovary were removed. The remaining uterine horn, oviduct, and ovary were removed on PND 56. Treatment with CGS 20267 decreased plasma E2 levels, whereas EM-800 had no effect compared with CX ewes. Uterine horn weight and length were not affected by EM-800 or CGS 20267 but were decreased in EV ewes on PND 56. On PND 14 and PND 56, treatment with EV decreased endometrial thickness but increased myometrial thickness. The numbers of ductal gland invaginations and endometrial glands were not affected by CGS but were lower in EM-800 ewes on PND 56. Exposure to EV completely inhibited endometrial gland development and induced luminal epithelial hypertrophy but did not alter uterine cell proliferation. Exposure to EV substantially decreased expression of ERalpha, insulin-like growth factor (IGF) I, and IGF-II in the endometrium. Results indicate that circulating E2 does not regulate endometrial gland differentiation or development. Although ERalpha does not regulate initial differentiation of the endometrial glandular epithelium, results indicate that ERalpha does regulate, in part, coiling and branching morphogenesis of endometrial glands in the neonatal ewe. Ablation of endometrial gland genesis by EV indicates that postnatal uterine development is extremely sensitive to the detrimental effects of inappropriate steroid exposure.  相似文献   

19.
The objective of this study was to investigate differences in the expression of estrogen receptor-alpha (ERalpha), progesterone receptor (PR) and the proliferative indexes (Ki-67), in the uterus and oviduct of sheep with estrus synchronized either by prostaglandin analogues (Group PA, n=27) or by treatment with progestagens (Group P, n=29) on days 4 and 7 (day 0=estrus), when the embryos were collected. Immunohistochemical methods were used to quantify ERalpha, PR and Ki-67 in six superficial and deep compartments in the uterus and oviduct. The expression of ERalpha was significantly (P<0.01) lower in progestagen treated ewes than in prostaglandin analogues treated group in the luminal epithelium, superficial glands and superficial stroma in the uterus on day 4. The expression of PR was significantly lower in progesterone treated ewes than in the PA Group in the superficial gland (P<0.05) in both days studied. The lowest expression of PR was observed in the luminal caruncular epithelium and superficial glands in both treatments, obtaining the lowest levels on day 4 (P<0.05). There were significant differences between days 4 and 7 in the Ki-67 immunostaining in the luminal epithelium (P<0.01) and superficial glands (P<0.05). A higher cell proliferation was observed in the uterine epithelium (P<0.05) on day 4 in the animals treated with progestagens. Results indicate that sheep with synchronization of estrus with progestagens showed a reduction of ERalpha and PR protein expression in most of oviductal and uterine cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号