首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detecting quantitative trait loci (QTL) and estimating QTL variances (represented by the squared QTL effects) are two main goals of QTL mapping and genome-wide association studies (GWAS). However, there are issues associated with estimated QTL variances and such issues have not attracted much attention from the QTL mapping community. Estimated QTL variances are usually biased upwards due to estimation being associated with significance tests. The phenomenon is called the Beavis effect. However, estimated variances of QTL without significance tests can also be biased upwards, which cannot be explained by the Beavis effect; rather, this bias is due to the fact that QTL variances are often estimated as the squares of the estimated QTL effects. The parameters are the QTL effects and the estimated QTL variances are obtained by squaring the estimated QTL effects. This square transformation failed to incorporate the errors of estimated QTL effects into the transformation. The consequence is biases in estimated QTL variances. To correct the biases, we can either reformulate the QTL model by treating the QTL effect as random and directly estimate the QTL variance (as a variance component) or adjust the bias by taking into account the error of the estimated QTL effect. A moment method of estimation has been proposed to correct the bias. The method has been validated via Monte Carlo simulation studies. The method has been applied to QTL mapping for the 10-week-body-weight trait from an F2 mouse population.  相似文献   

2.
N Yi  S Xu 《Genetics》1999,153(2):1029-1040
Mapping quantitative trait loci (QTL) for complex binary traits is more challenging than for normally distributed traits due to the nonlinear relationship between the observed phenotype and unobservable genetic effects, especially when the mapping population contains multiple outbred families. Because the number of alleles of a QTL depends on the number of founders in an outbred population, it is more appropriate to treat the effect of each allele as a random variable so that a single variance rather than individual allelic effects is estimated and tested. Such a method is called the random model approach. In this study, we develop the random model approach of QTL mapping for binary traits in outbred populations. An EM-algorithm with a Fisher-scoring algorithm embedded in each E-step is adopted here to estimate the genetic variances. A simple Monte Carlo integration technique is used here to calculate the likelihood-ratio test statistic. For the first time we show that QTL of complex binary traits in an outbred population can be scanned along a chromosome for their positions, estimated for their explained variances, and tested for their statistical significance. Application of the method is illustrated using a set of simulated data.  相似文献   

3.
In modern whole-genome scans, the use of stringent thresholds to control the genome-wide testing error distorts the estimation process, producing estimated effect sizes that may be on average far greater in magnitude than the true effect sizes. We introduce a method, based on the estimate of genetic effect and its standard error as reported by standard statistical software, to correct for this bias in case-control association studies. Our approach is widely applicable, is far easier to implement than competing approaches, and may often be applied to published studies without access to the original data. We evaluate the performance of our approach via extensive simulations for a range of genetic models, minor allele frequencies, and genetic effect sizes. Compared to the naive estimation procedure, our approach reduces the bias and the mean squared error, especially for modest effect sizes. We also develop a principled method to construct confidence intervals for the genetic effect that acknowledges the conditioning on statistical significance. Our approach is described in the specific context of odds ratios and logistic modeling but is more widely applicable. Application to recently published data sets demonstrates the relevance of our approach to modern genome scans.  相似文献   

4.
Summary Heritability estimated from sire family variance components, ignoring dams, pools conventional paternal and maternal half sib estimates, in a way which is biased upward, and sub-optimal for minimizing the sampling variance. Standard error of a sire family estimate will be smaller than that of the equivalent paternal half sib estimate, but not as small as that of an estimate obtained by optimal pooling of paternal and maternal half sib estimates. If only additive genetic variance components are significant, the bias may be removed by use of a computed average genetic relationship for sire families, in place of a nominal R = 0.25. Average genetic relationship may be computed from mean and variance of dam family size within sire families. If dominance, epistatic, or maternal components are significant, this simple correction is not appropriate. In situations likely to be encountered in large domestic species such as sheep and cattle (dam family size small and uniform) bias will be negligible. The method could be useful where cost of dam identification is a limiting factor.  相似文献   

5.
C M Lebreton  P M Visscher 《Genetics》1998,148(1):525-535
Several nonparametric bootstrap methods are tested to obtain better confidence intervals for the quantitative trait loci (QTL) positions, i.e., with minimal width and unbiased coverage probability. Two selective resampling schemes are proposed as a means of conditioning the bootstrap on the number of genetic factors in our model inferred from the original data. The selection is based on criteria related to the estimated number of genetic factors, and only the retained bootstrapped samples will contribute a value to the empirically estimated distribution of the QTL position estimate. These schemes are compared with a nonselective scheme across a range of simple configurations of one QTL on a one-chromosome genome. In particular, the effect of the chromosome length and the relative position of the QTL are examined for a given experimental power, which determines the confidence interval size. With the test protocol used, it appears that the selective resampling schemes are either unbiased or least biased when the QTL is situated near the middle of the chromosome. When the QTL is closer to one end, the likelihood curve of its position along the chromosome becomes truncated, and the nonselective scheme then performs better inasmuch as the percentage of estimated confidence intervals that actually contain the real QTL''s position is closer to expectation. The nonselective method, however, produces larger confidence intervals. Hence, we advocate use of the selective methods, regardless of the QTL position along the chromosome (to reduce confidence interval sizes), but we leave the problem open as to how the method should be altered to take into account the bias of the original estimate of the QTL''s position.  相似文献   

6.
Xu R  Harrington DP 《Biometrics》2001,57(3):875-885
A semiparametric estimate of an average regression effect with right-censored failure time data has recently been proposed under the Cox-type model where the regression effect beta(t) is allowed to vary with time. In this article, we derive a simple algebraic relationship between this average regression effect and a measurement of group differences in k-sample transformation models when the random error belongs to the G(rho) family of Harrington and Fleming (1982, Biometrika 69, 553-566), the latter being equivalent to the conditional regression effect in a gamma frailty model. The models considered here are suitable for the attenuating hazard ratios that often arise in practice. The results reveal an interesting connection among the above three classes of models as alternatives to the proportional hazards assumption and add to our understanding of the behavior of the partial likelihood estimate under nonproportional hazards. The algebraic relationship provides a simple estimator under the transformation model. We develop a variance estimator based on the empirical influence function that is much easier to compute than the previously suggested resampling methods. When there is truncation in the right tail of the failure times, we propose a method of bias correction to improve the coverage properties of the confidence intervals. The estimate, its estimated variance, and the bias correction term can all be calculated with minor modifications to standard software for proportional hazards regression.  相似文献   

7.
Zhang YM  Mao Y  Xie C  Smith H  Luo L  Xu S 《Genetics》2005,169(4):2267-2275
Many commercial inbred lines are available in crops. A large amount of genetic variation is preserved among these lines. The genealogical history of the inbred lines is usually well documented. However, quantitative trait loci (QTL) responsible for the genetic variances among the lines are largely unexplored due to lack of statistical methods. In this study, we show that the pedigree information of the lines along with the trait values and marker information can be used to map QTL without the need of further crossing experiments. We develop a Monte Carlo method to estimate locus-specific identity-by-descent (IBD) matrices. These IBD matrices are further incorporated into a mixed-model equation for variance component analysis. QTL variance is estimated and tested at every putative position of the genome. The actual QTL are detected by scanning the entire genome. Applying this new method to a well-documented pedigree of maize (Zea mays L.) that consists of 404 inbred lines, we mapped eight QTL for the maize male flowering trait, growing degree day heat units to pollen shedding (GDUSHD). These detected QTL contributed >80% of the variance observed among the inbred lines. The QTL were then used to evaluate all the inbred lines using the best linear unbiased prediction (BLUP) technique. Superior lines were selected according to the estimated QTL allelic values, a technique called marker-assisted selection (MAS). The MAS procedure implemented via BLUP may be routinely used by breeders to select superior lines and line combinations for development of new cultivars.  相似文献   

8.
In a family-based genetic study such as the Framingham Heart Study (FHS), longitudinal trait measurements are recorded on subjects collected from families. Observations on subjects from the same family are correlated due to shared genetic composition or environmental factors such as diet. The data have a 3-level structure with measurements nested in subjects and subjects nested in families. We propose a semiparametric variance components model to describe phenotype observed at a time point as the sum of a nonparametric population mean function, a nonparametric random quantitative trait locus (QTL) effect, a shared environmental effect, a residual random polygenic effect and measurement error. One feature of the model is that we do not assume a parametric functional form of the age-dependent QTL effect, and we use penalized spline-based method to fit the model. We obtain nonparametric estimation of the QTL heritability defined as the ratio of the QTL variance to the total phenotypic variance. We use simulation studies to investigate performance of the proposed methods and apply these methods to the FHS systolic blood pressure data to estimate age-specific QTL effect at 62cM on chromosome 17.  相似文献   

9.
Utz HF  Melchinger AE  Schön CC 《Genetics》2000,154(3):1839-1849
Cross validation (CV) was used to analyze the effects of different environments and different genotypic samples on estimates of the proportion of genotypic variance explained by QTL (p). Testcrosses of 344 F(3) maize lines grown in four environments were evaluated for a number of agronomic traits. In each of 200 replicated CV runs, this data set was subdivided into an estimation set (ES) and various test sets (TS). ES were used to map QTL and estimate p for each run (p(ES)) and its median (p(ES)) across all runs. The bias of these estimates was assessed by comparison with the median (p(TS.ES)) obtained from TS. We also used two independent validation samples derived from the same cross for further comparison. The median p(ES) showed a large upward bias compared to p(TS.ES). Environmental sampling generally had a smaller effect on the bias of p(ES) than genotypic sampling or both factors simultaneously. In independent validation, p(TS.ES) was on average only 50% of p(ES). A wide range among p(ES) reflected a large sampling error of these estimates. QTL frequency distributions and comparison of estimated QTL effects indicated a low precision of QTL localization and an upward bias in the absolute values of estimated QTL effects from ES. CV with data from three QTL studies reported in the literature yielded similar results as those obtained with maize testcrosses. We therefore recommend CV for obtaining asymptotically unbiased estimates of p and consequently a realistic assessment of the prospects of MAS.  相似文献   

10.
HF Utz  AE Melchinger  CC Sch?n 《Genetics》2000,154(4):1839-1849
Cross validation (CV) was used to analyze the effects of different environments and different genotypic samples on estimates of the proportion of genotypic variance explained by QTL (p). Testcrosses of 344 F(3) maize lines grown in four environments were evaluated for a number of agronomic traits. In each of 200 replicated CV runs, this data set was subdivided into an estimation set (ES) and various test sets (TS). ES were used to map QTL and estimate p for each run (p(ES)) and its median (p(ES)) across all runs. The bias of these estimates was assessed by comparison with the median (p(TS.ES)) obtained from TS. We also used two independent validation samples derived from the same cross for further comparison. The median p(ES) showed a large upward bias compared to p(TS.ES). Environmental sampling generally had a smaller effect on the bias of p(ES) than genotypic sampling or both factors simultaneously. In independent validation, p(TS.ES) was on average only 50% of p(ES). A wide range among p(ES) reflected a large sampling error of these estimates. QTL frequency distributions and comparison of estimated QTL effects indicated a low precision of QTL localization and an upward bias in the absolute values of estimated QTL effects from ES. CV with data from three QTL studies reported in the literature yielded similar results as those obtained with maize testcrosses. We therefore recommend CV for obtaining asymptotically unbiased estimates of p and consequently a realistic assessment of the prospects of MAS.  相似文献   

11.
The Beavis effect in quantitative trait locus (QTL) mapping describes a phenomenon that the estimated effect size of a statistically significant QTL (measured by the QTL variance) is greater than the true effect size of the QTL if the sample size is not sufficiently large. This is a typical example of the Winners’ curse applied to molecular quantitative genetics. Theoretical evaluation and correction for the Winners’ curse have been studied for interval mapping. However, similar technologies have not been available for current models of QTL mapping and genome-wide association studies where a polygene is often included in the linear mixed models to control the genetic background effect. In this study, we developed the theory of the Beavis effect in a linear mixed model using a truncated noncentral Chi-square distribution. We equated the observed Wald test statistic of a significant QTL to the expectation of a truncated noncentral Chi-square distribution to obtain a bias-corrected estimate of the QTL variance. The results are validated from replicated Monte Carlo simulation experiments. We applied the new method to the grain width (GW) trait of a rice population consisting of 524 homozygous varieties with over 300 k single nucleotide polymorphism markers. Two loci were identified and the estimated QTL heritability were corrected for the Beavis effect. Bias correction for the larger QTL on chromosome 5 (GW5) with an estimated heritability of 12% did not change the QTL heritability due to the extremely large test score and estimated QTL effect. The smaller QTL on chromosome 9 (GW9) had an estimated QTL heritability of 9% reduced to 6% after the bias-correction.  相似文献   

12.
Weller JI  Weller H  Kliger D  Ron M 《Genetics》2002,162(2):841-849
A method is described on the basis of a modification of the granddaughter design to obtain estimates of quantitative trait loci (QTL) allele frequencies in dairy cattle populations and to determine QTL genotypes for both homozygous and heterozygous grandsires. The method is based on determining the QTL allele passed from grandsires to their maternal granddaughters using haplotypes consisting of several closely linked genetic markers. This method was applied to simulated data of 10 grandsire families, each with 500 granddaughters, and a QTL with a substitution effect of 0.4 phenotypic standard deviations and to actual data for a previously analyzed QTL in the center of chromosome 6, with substitution effect of 1 phenotypic standard deviation on protein percentage. In the simulated data the standard error for the estimated QTL substitution effect with four closely linked multiallelic markers was only 7% greater than the expected standard error with completely correct identification of QTL allele origin. The method estimated the population QTL allelic frequency as 0.64 +/- 0.07, compared to the simulated value of 0.7. In the actual data, the frequency of the allele that increases protein percentage was estimated as 0.63 +/- 0.06. In both data sets the hypothesis of equal allelic frequencies was rejected at P < 0.05.  相似文献   

13.
Bogdan M  Doerge RW 《Heredity》2005,95(6):476-484
In many empirical studies, it has been observed that genome scans yield biased estimates of heritability, as well as genetic effects. It is widely accepted that quantitative trait locus (QTL) mapping is a model selection procedure, and that the overestimation of genetic effects is the result of using the same data for model selection as estimation of parameters. There are two key steps in QTL modeling, each of which biases the estimation of genetic effects. First, test procedures are employed to select the regions of the genome for which there is significant evidence for the presence of QTL. Second, and most important for this demonstration, estimates of the genetic effects are reported only at the locations for which the evidence is maximal. We demonstrate that even when we know there is just one QTL present (ignoring the testing bias), and we use interval mapping to estimate its location and effect, the estimator of the effect will be biased. As evidence, we present results of simulations investigating the relative importance of the two sources of bias and the dependence of bias of heritability estimators on the true QTL heritability, sample size, and the length of the investigated part of the genome. Moreover, we present results of simulations demonstrating the skewness of the distribution of estimators of QTL locations and the resulting bias in estimation of location. We use computer simulations to investigate the dependence of this bias on the true QTL location, heritability, and the sample size.  相似文献   

14.
Xie C  Xu S 《Genetical research》2000,76(1):105-115
Knowledge of quantitative trait locus (QTL) mapping in polyploids is almost void, albeit many exquisite strategies of QTL mapping have been proposed and extensive investigations have been carried out in diploid animals and plants. In this paper we develop a simple algorithm which uses an iteratively reweighted least square method to map QTLs in tetraploid populations. The method uses information from all markers in a linkage group to infer the probability distribution of QTL genotype under the assumption of random chromosome segregation. Unlike QTL mapping in diploid species, here we estimate and test the compound 'gametic effect', which consists of the composite 'genic effect' of alleles and higher-order gene interactions. The validity and efficiency of the proposed method are investigated through simulation studies. Results show that the method can successfully locate QTLs and separates different sources (e.g. additive and dominance) of variance components contributed by the QTLs.  相似文献   

15.
Quantitative trait loci mapping in F(2) crosses between outbred lines   总被引:2,自引:0,他引:2  
Pérez-Enciso M  Varona L 《Genetics》2000,155(1):391-405
We develop a mixed-model approach for QTL analysis in crosses between outbred lines that allows for QTL segregation within lines as well as for differences in mean QTL effects between lines. We also propose a method called "segment mapping" that is based in partitioning the genome in a series of segments. The expected change in mean according to percentage of breed origin, together with the genetic variance associated with each segment, is estimated using maximum likelihood. The method also allows the estimation of differences in additive variances between the parental lines. Completely fixed random and mixed models together with segment mapping are compared via simulation. The segment mapping and mixed-model behaviors are similar to those of classical methods, either the fixed or random models, under simple genetic models (a single QTL with alternative alleles fixed in each line), whereas they provide less biased estimates and have higher power than fixed or random models in more complex situations, i.e., when the QTL are segregating within the parental lines. The segment mapping approach is particularly useful to determining which chromosome regions are likely to contain QTL when these are linked.  相似文献   

16.
Estimating polygenic effects using markers of the entire genome   总被引:26,自引:0,他引:26  
Xu S 《Genetics》2003,163(2):789-801
Molecular markers have been used to map quantitative trait loci. However, they are rarely used to evaluate effects of chromosome segments of the entire genome. The original interval-mapping approach and various modified versions of it may have limited use in evaluating the genetic effects of the entire genome because they require evaluation of multiple models and model selection. Here we present a Bayesian regression method to simultaneously estimate genetic effects associated with markers of the entire genome. With the Bayesian method, we were able to handle situations in which the number of effects is even larger than the number of observations. The key to the success is that we allow each marker effect to have its own variance parameter, which in turn has its own prior distribution so that the variance can be estimated from the data. Under this hierarchical model, we were able to handle a large number of markers and most of the markers may have negligible effects. As a result, it is possible to evaluate the distribution of the marker effects. Using data from the North American Barley Genome Mapping Project in double-haploid barley, we found that the distribution of gene effects follows closely an L-shaped Gamma distribution, which is in contrast to the bell-shaped Gamma distribution when the gene effects were estimated from interval mapping. In addition, we show that the Bayesian method serves as an alternative or even better QTL mapping method because it produces clearer signals for QTL. Similar results were found from simulated data sets of F(2) and backcross (BC) families.  相似文献   

17.
Previously, we showed that in randomised experiments, correction for measurement error in a baseline variable induces bias in the estimated treatment effect, and conversely that ignoring measurement error avoids bias. In observational studies, non-zero baseline covariate differences between treatment groups may be anticipated. Using a graphical approach, we argue intuitively that if baseline differences are large, failing to correct for measurement error leads to a biased estimate of the treatment effect. In contrast, correction eliminates bias if the true and observed baseline differences are equal. If this equality is not satisfied, the corrected estimator is also biased, but typically less so than the uncorrected estimator. Contrasting these findings, we conclude that there must be a threshold for the true baseline difference, above which correction is worthwhile. We derive expressions for the bias of the corrected and uncorrected estimators, as functions of the correlation of the baseline variable with the study outcome, its reliability, the true baseline difference, and the sample sizes. Comparison of these expressions defines a theoretical decision threshold about whether to correct for measurement error. The results show that correction is usually preferred in large studies, and also in small studies with moderate baseline differences. If the group sample sizes are very disparate, correction is less advantageous. If the equivalent balanced sample size is less than about 25 per group, one should correct for measurement error if the true baseline difference is expected to exceed 0.2-0.3 standard deviation units. These results are illustrated with data from a cohort study of atherosclerosis.  相似文献   

18.
Summary The decision of whether or not to use QTLassociated markers in breeding programs needs further information about the magnitude of the additive and dominance effects that can be estimated. The objectives of this paper are (1) to apply some of the Moreno-Gonzalez (1993) genetic models to backcross simulation data generated by the Monte Carlo method, and (2) to get simulation information about the number of testing progenies and mapping density in relation to the magnitude of gene effect estimates. Results of the Monte Carlo study show that the stepwise regression analysis was able to detect relatively small additive and dominance effects when the QTL are independently segregating. When testing selfed families derived from backcross individuals, dominance effects had a larger error standard deviation and were estimated at a lower frequency. Linked QTL require a higher marker mapping density on the genome and a larger number of progenies to detect small genetic effects. Reduction of the environmental error variance by evaluating selfed backcross families in replicate experiments increased the power of the test. Expressions of the number of progenies for detecting significant additive effects were developed for some genetic situations. The ratio of the within-backcross genetic variance to the square of a gene effect estimate is a function of the number of progenies, the heritability of the trait, the marker map density and the portion of the genetic variance explained by the model. Different values (from 0 to 1) assigned to (relative position of the QTL in the marker segment) did not cause a large shift in the residual mean square of the model.  相似文献   

19.
Four-way crosses (4WC) involving four different inbred lines often appear in plant and animal commercial breeding programs. Direct mapping of quantitative trait loci (QTL) in these commercial populations is both economical and practical. However, the existing statistical methods for mapping QTL in a 4WC population are built on the single-QTL genetic model. This simple genetic model fails to take into account QTL interactions, which play an important role in the genetic architecture of complex traits. In this paper, therefore, we attempted to develop a statistical method to detect epistatic QTL in 4WC population. Conditional probabilities of QTL genotypes, computed by the multi-point single locus method, were used to sample the genotypes of all putative QTL in the entire genome. The sampled genotypes were used to construct the design matrix for QTL effects. All QTL effects, including main and epistatic effects, were simultaneously estimated by the penalized maximum likelihood method. The proposed method was confirmed by a series of Monte Carlo simulation studies and real data analysis of cotton. The new method will provide novel tools for the genetic dissection of complex traits, construction of QTL networks, and analysis of heterosis.  相似文献   

20.
Hao K  Li C  Rosenow C  Hung Wong W 《Genomics》2004,84(4):623-630
Currently, most analytical methods assume all observed genotypes are correct; however, it is clear that errors may reduce statistical power or bias inference in genetic studies. We propose procedures for estimating error rate in genetic analysis and apply them to study the GeneChip Mapping 10K array, which is a technology that has recently become available and allows researchers to survey over 10,000 SNPs in a single assay. We employed a strategy to estimate the genotype error rate in pedigree data. First, the "dose-response" reference curve between error rate and the observable error number were derived by simulation, conditional on given pedigree structures and genotypes. Second, the error rate was estimated by calibrating the number of observed errors in real data to the reference curve. We evaluated the performance of this method by simulation study and applied it to a data set of 30 pedigrees genotyped using the GeneChip Mapping 10K array. This method performed favorably in all scenarios we surveyed. The dose-response reference curve was monotone and almost linear with a large slope. The method was able to estimate accurately the error rate under various pedigree structures and error models and under heterogeneous error rates. Using this method, we found that the average genotyping error rate of the GeneChip Mapping 10K array was about 0.1%. Our method provides a quick and unbiased solution to address the genotype error rate in pedigree data. It behaves well in a wide range of settings and can be easily applied in other genetic projects. The robust estimation of genotyping error rate allows us to estimate power and sample size and conduct unbiased genetic tests. The GeneChip Mapping 10K array has a low overall error rate, which is consistent with the results obtained from alternative genotyping assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号