首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasite burden predicts disease severity in malaria and risk of death in cerebral malaria patients. In murine experimental cerebral malaria (ECM), parasite burden and CD8(+) T cells promote disease by mechanisms that are not fully understood. We found that the majority of brain-recruited CD8(+) T cells expressed granzyme B (GzmB). Furthermore, gzmB(-/-) mice harbored reduced parasite numbers in the brain as a consequence of enhanced antiparasitic CD4(+) T cell responses and were protected from ECM. We showed in these ECM-resistant mice that adoptively transferred, Ag-specific CD8(+) T cells migrated to the brain, but did not induce ECM until a critical Ag threshold was reached. ECM induction was exquisitely dependent on Ag-specific CD8(+) T cell-derived perforin and GzmB, but not IFN-γ. In wild-type mice, full activation of brain-recruited CD8(+) T cells also depended on a critical number of parasites in this tissue, which in turn, was sustained by these tissue-recruited cells. Thus, an interdependent relationship between parasite burden and CD8(+) T cells dictates the onset of perforin/GzmB-mediated ECM.  相似文献   

2.
Standard murine models of cutaneous leishmaniasis, involving s.c. inoculation of large numbers of Leishmania major promastigotes, have not supported an essential role for CD8(+) T cells in the control of primary infection. Recently, a L. major model combining two main features of natural transmission, low parasite dose and inoculation into a dermal site, has been established in resistant C57BL/6 mice. In the present studies, C57BL/6 mice with CD8(+) T cell deficiencies, including CD8(-/-) and CD8-depleted mice, failed to control the growth of L. major following inoculation of 100 metacyclic promastigotes into the ear dermis. The resulting dermal pathology was minor and delayed. Lesion formation in wild-type mice was coincident with the killing of parasites in the inoculation site. Both events were associated with the accumulation of CD8(+) T lymphocytes in the skin and with the capacity of CD8(+) T cells recovered from draining lymph nodes or infected dermis to release IFN-gamma following coculture with infected dendritic cells. Reconstitution of resistance to L. major in RAG(-/-) mice using T cells from naive donors was optimal when both CD4(+) and CD8(+) T cells were transferred. Primed CD8(+) T lymphocytes obtained from C57BL/6 mice during the acute stage of infection were able to mediate both pathology and immunity when transferred alone. The low dose, intradermal challenge model reveals that CD8(+) T cells play an essential role in both pathogenesis of and immunity to primary infection with L. major in the skin.  相似文献   

3.
Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8(+) T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8(+) T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8(+) T-cell activation was assayed using 'B3Z' reporter cells in vitro, or adoptively-transferred OVA-specific 'OT-I' CD8(+) T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8(+) T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8(+) T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products.  相似文献   

4.
Studies in malaria patients indicate that higher frequencies of peripheral blood CD4(+) Foxp3(+) CD25(+) regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3(+) cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3(+) cells and resulted in lower parasite biomass, impaired antigen-specific CD4(+) T and CD8(+) T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3(+) cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology.  相似文献   

5.
The expression of cytolytic activity and production of interferon gamma (IFN-gamma) by CD8(+) T cells is thought to play a fundamental role in protection against infection by viruses and intracellular parasites. Fran?ois Erard and Graham Le Gros have recently shown that CD8(+) T cells activated in the presence of interleukin 4 (IL-4) can switch development to a CD8(-)CD4(-)Th2-like phenotype that is not cytolytic and that does not produce IFN-gamma. Here they speculate on whether this IL-4-induced switch is used by the host to make a more-effective response against parasite invasion, or i f it is a host mechanism used by the parasite to evade protective CD8(+) T-cell responses.  相似文献   

6.
Capsular components of Cryptococcus neoformans induce several deleterious effects on T cells. However, it is unknown how the capsular components act on these lymphocytes. The present study characterized cellular and molecular events involved in immunoregulation of splenic CD4(+) T cells by C. neoformans capsular polysaccharides (CPSs). The results showed that CPSs induce proliferation of normal splenic CD4(+) T cells, but not of normal CD8(+) T or B lymphocytes. Such proliferation depended on physical contact between CPSs and viable splenic adherent cells (SAC) and CD40 ligand-induced intracellular signal transduction. The absence of lymphoproliferation after fixation of SAC with paraformaldehyde has discarded the hypothesis of a superantigen-like activation. The evaluation of a cytokine pattern produced by the responding CD4(+) T lymphocytes revealed that CPSs induce a dominant Th2 pattern, with high levels of IL-4 and IL-10 production and undetectable inflammatory cytokines, such as TNF-alpha and IFN-gamma. Blockade of CD40 ligand by relevant mAb down-regulated the CPS-induced anti-inflammatory cytokine production and abolished the enhancement of fungus growth in cocultures of SAC and CD4(+) T lymphocytes. Our findings suggest that CPSs induce proliferation and differentiation of normal CD4(+) T cells into a Th2 phenotype, which could favor parasite growth and thus important deleterious effects to the host.  相似文献   

7.
We have recently shown that MHC class II-dependent thymocyte-thymocyte (T-T) interaction successfully generates CD4(+) T cells (T-T CD4(+) T cells), and that T-T CD4(+) T cells expressing promyelocytic leukemia zinc finger protein (PLZF) show an innate property both in mice and humans. In this article, we report that the thymic T-T interaction is essential for the conversion of CD8(+) T cells into innate phenotype in the physiological condition. CD8(+) T cells developed in the presence of PLZF(+) CD4(+) T cells showed marked upregulation of eomesodermin (Eomes), activation/memory phenotype, and rapid production of IFN-γ on ex vivo stimulation. Their development was highly dependent on the PLZF expression in T-T CD4(+) T cells and the IL-4 secreted by PLZF(+) T-T CD4(+) T cells. The same events may take place in humans, as a substantial number of Eomes expressing innate CD8(+) T cells were found in human fetal thymi and spleens. It suggests that PLZF(+) T-T CD4(+) T cells in combination with Eomes(+) CD8(+) T cells might actively participate in the innate immune response against various pathogens, particularly in human perinatal period.  相似文献   

8.
CD8(+) T cell responses have been shown to be regulated by dendritic cells (DCs) and CD4(+) T cells, leading to the tenet that CD8(+) T cells play a passive role in their own differentiation. In contrast, by using a DNA vaccination model, to separate the events of vaccination from those of CD8(+) T cell priming, we demonstrate that CD8(+) T cells, themselves, actively limit their own memory potential through CD8(+) T cell-derived IFN-γ-dependent modification of the IL-12/IL-15Rα axis on DCs. Such CD8(+) T cell-driven cytokine alterations result in increased T-bet and decreased Bcl-2 expression, and thus decreased memory progenitor formation. These results identify an unrecognized role for CD8(+) T cells in the regulation of their own effector differentiation fate and a previously uncharacterized relationship between the balance of inflammation and memory formation.  相似文献   

9.
Viruses can cause a severe lymphopenia early in infection and a subsequent, lasting loss of pre-existing CD8(+) memory T cells. We therefore questioned how well virus Ag-specific memory CD8(+) T cells could reconstitute mice rendered lymphopenic as a consequence of genetics, irradiation, or viral or poly(I:C)-induced cytokines. In each case, reconstitution of the CD8(+) compartment was associated with limited division of virus-specific memory T cells and a reduction in their proportion. This indicates that foreign Ag-experienced CD44(high)CD8(+) memory T cells may respond differently to homeostatic signals than other CD44(high)CD8(+) cells, and that events inducing lymphopenia may lead to a permanent reduction in T cell memory.  相似文献   

10.
Acute and lethal ileitis can be elicited in certain strains of inbred mice after oral infection with the intracellular protozoan parasite Toxoplasma gondii. The development of this inflammatory process is dependent upon the induction of a robust Th1 response, including overproduction of IFN-gamma, TNF-alpha, and NO, as has been reported in other experimental models of human inflammatory bowel disease. In this study we have investigated the role of CD4(+) T cells from the lamina propria (LP) in the early inflammatory events after T. gondii infection using isolated and primary cultured intestinal cells from infected mice and immortalized mouse mIC(cl2) intestinal epithelial cells. Primed LP CD4(+) T cells isolated from parasite-infected mice produce substantial quantities of both IFN-gamma and TNF-alpha. IFN-gamma- and TNF-alpha-producing LP CD4(+) T cells synergize with infected mIC(cl2) and enhance the production of several inflammatory chemokines including macrophage-inflammatory protein-2, monocyte chemoattractant protein-1, monocyte chemoattractant protein-3, macrophage-inflammatory protein-1alphabeta, and IFN-gamma-inducible protein-10. Furthermore, primed LP CD4(+) T cells cocultured with infected mIC(cl2) inhibited replication of the parasite in the intestinal epithelial cells. Thus, LP CD4(+) T cells can interact with parasite-infected intestinal epithelial cells and alter the expression of several proinflammatory products that have been associated with the development of intestinal inflammation. The interaction between these two components of the gut mucosal compartment (CD4(+) T cells and enterocytes) may play a role in the immunopathogenesis of this pathogen-driven experimental inflammatory bowel disease model.  相似文献   

11.
It is well established that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a crucial role in the course of different infectious diseases. However, contradictory results have been published regarding to malaria infection. In this study, we report that specific ablation of Foxp3(+) Tregs in Plasmodium yoelii-infected DEREG-BALB/c mice leads to an increase in T cell activation accompanied by a significant decrease in parasitemia. To better understand how Foxp3(+) Tregs orchestrate this phenotype, we used microarrays to analyze CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells in the course of P. yoelii infection. Using this approach we identified genes specifically upregulated in CD4(+)CD25(+)Foxp3(+) Tregs in the course of infection, such as G-protein-coupled receptor 83 and Socs2. This analysis also revealed that both CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells upregulate CTLA-4, granzyme B, and, more strikingly, IL-10 during acute blood infection. Therefore, we aimed to define the function of T cell-derived IL-10 in this context by Cre/loxP-mediated selective conditional inactivation of the IL-10 gene in T cells. Unexpectedly, IL-10 ablation in T cells exerts only a minor effect on parasite clearance, even though CD8(+) T cells are more strongly activated, the production of IFN-γ and TNF-α by CD4(+)CD25(-) T cells is increased, and the suppressive activity of CD4(+)CD25(+) Tregs is reduced upon infection. In summary, these results suggest that CD4(+)Foxp3(+) Tregs modulate the course of P. yoelii infection in BALB/c mice. Moreover, CD4(+) T cell-derived IL-10 affects T effector function and Treg activity, but has only a limited direct effect on parasite clearance in this model.  相似文献   

12.
HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 compartment. To better understand the dynamics of HIV-specific T cells, we analyzed the kinetics and polyfunctional profiles of Gag-specific CD4(+) and CD8(+) T cell responses in 12 subtype C-infected individuals with different disease-progression profiles, ranging from acute to chronic HIV infection. The frequencies of Gag-responsive CD4(+) and CD8(+) T cells showed distinct temporal kinetics. The peak frequency of Gag-responsive IFN-γ(+)CD4(+) T cells was observed at a median of 28 d (interquartile range: 21-81 d) post-Fiebig I/II staging, whereas Gag-specific IFN-γ(+)CD8(+) T cell responses peaked at a median of 253 d (interquartile range: 136-401 d) and showed a significant biphasic expansion. The proportion of TNF-α-expressing cells within the IFN-γ(+)CD4(+) T cell population increased (p = 0.001) over time, whereas TNF-α-expressing cells within IFN-γ(+)CD8(+) T cells declined (p = 0.005). Both Gag-responsive CD4(+) and CD8(+) T cells showed decreased Ki67 expression within the first 120 d post-Fiebig I/II staging. Prior to the disappearance of Gag-responsive Ki67(+)CD4(+) T cells, these cells positively correlated (p = 0.00038) with viremia, indicating that early Gag-responsive CD4 events are shaped by viral burden. No such associations were observed in the Gag-specific CD8(+) T cell compartment. Overall, these observations indicated that circulating Gag-responsive CD4(+) and CD8(+) T cell frequencies and functions are not synchronous, and properties change rapidly at different tempos during early HIV infection.  相似文献   

13.
Visceral leishmaniasis (VL) is a chronic and fatal disease in humans and dogs caused by the intracellular protozoan parasites, Leishmania donovani and L. infantum (L. chagasi). Relapse of disease is frequent in immunocompromised patients, in which the number of VL cases has been increasing recently. The present study is aimed to improve the understanding of mechanisms of L. donovani persistence in immunocompromised conditions using alymphoplastic aly/aly mice. Hepatic parasite burden, granuloma formation and induction of regulatory T cells were determined for up to 7 months after the intravenous inoculation with L. donovani promastigotes. While control aly/+ mice showed a peak of hepatic parasite growth at 4 weeks post infection (WPI) and resolved the infection by 8 WPI, aly/aly mice showed a similar peak in hepatic parasite burden but maintained persistent in the chronic phase of infection, which was associated with delayed and impaired granuloma maturation. Although hepatic CD4(+)Foxp3(+) but not CD8(+)Foxp3(+) T cells were first detected at 4 WPI in both strains of mice, the number of CD4(+)Foxp3(+) T cells was significantly increased in aly/aly mice from 8 WPI. Immunohistochemical analysis demonstrated the presence of Foxp3(+) T cells in L. donovani-induced hepatic granulomas and perivascular neo-lymphoid aggregates. Quantitative real-time PCR analysis of mature granulomas collected by laser microdissection revealed the correlation of Foxp3 and IL-10 mRNA level. Furthermore, treatment of infected aly/aly mice with anti-CD25 or anti-FR4 mAb resulted in significant reductions in both hepatic Foxp3(+) cells and parasite burden. Thus, we provide the first evidence that CD4(+)Foxp3(+) Tregs mediate L. donovani persistence in the liver during VL in immunodeficient murine model, a result that will help to establish new strategies of immunotherapy against this intracellular protozoan pathogen.  相似文献   

14.
Wild-type mice immunized with MART-1 melanoma Ag-engineered dendritic cells (DC) generate strong Ag-specific immunity that has an absolute requirement for both CD8(+) and CD4(+) T cells. DC administration to CD8 alpha knockout mice displayed unexpectedly enhanced levels of protection to tumor challenge despite this deficiency in CD8(+) T cells and the inability to mount MHC class I-restricted immune responses. This model has the following features: 1) antitumor protection is Ag independent; 2) had an absolute requirement for CD4(+) and NK1.1(+) cells; 3) CD4(+) splenocytes are responsible for cytokine production; 4) lytic cells in microcytotoxicity assays express NK, but lack T cell markers (NK1.1(+) alpha beta TCR(-) CD3(-)); and 5) the lytic phenotype can be transferred to naive CD8 alpha knockout mice by NK1.1(+) splenocytes. Elucidation of the signaling events that activate these effective cytotoxic cells and the putative suppressive mechanisms in a wild-type environment may provide means to enhance the clinical activity of DC-based approaches.  相似文献   

15.
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.  相似文献   

16.
Cerebral malaria is one of the severe complications of Plasmodium falciparum infection. Studies using a rodent model of Plasmodium berghei ANKA infection established that CD8(+) T cells are involved in the pathogenesis of cerebral malaria. However, it is unclear whether and how Plasmodium-specific CD8(+) T cells can be activated during the erythrocyte stage of malaria infection. We generated recombinant Plasmodium berghei ANKA expressing OVA (OVA-PbA) to investigate the parasite-specific T cell responses during malaria infection. Using this model system, we demonstrate two types of CD8(+) T cell activations during the infection with malaria parasite. Ag (OVA)-specific CD8(+) T cells were activated by TAP-dependent cross-presentation during infection with OVA-PbA leading to their expression of an activation phenotype and granzyme B and the development to functional CTL. These highly activated CD8(+) T cells were preferentially sequestered in the brain, although it was unclear whether these cells were involved in the pathogenesis of cerebral malaria. Activation of OVA-specific CD8(+) T cells in RAG2 knockout TCR-transgenic mice during infection with OVA-PbA did not have a protective role but rather was pathogenic to the host as shown by their higher parasitemia and earlier death when compared with RAG2 knockout mice. The OVA-specific CD8(+) T cells, however, were also activated during infection with wild-type parasites in an Ag-nonspecific manner, although the levels of activation were much lower. This nonspecific activation occurred in a TAP-independent manner, appeared to require NK cells, and was not by itself pathogenic to the host.  相似文献   

17.
MHC class I-specific inhibitory receptors are expressed by a subset of memory-phenotype CD8(+) T cells. Similar to NK cells, MHC class I-specific inhibitory receptors might subserve on T cells an important negative control that participates to the prevention of autologous damage. We analyzed here human CD8(+) T cells that express the Ig-like MHC class I-specific inhibitory receptors: killer cell Ig-like receptor (KIR) and CD85j. The cell surface expression of Ig-like inhibitory MHC class I receptors was found to correlate with an advanced stage of CD8(+) T cell maturation as evidenced by the reduced proliferative potential of KIR(+) and CD85j(+) T cells associated with their high intracytoplasmic perforin content. This concomitant regulation might represent a safety mechanism to control potentially harmful cytolytic CD8(+) T cells, by raising their activation threshold. Yet, KIR(+) and CD85j(+) T cells present distinct features. KIR(+)CD8(+) T cells are poor IFN-gamma producers upon TCR engagement. In addition, KIR are barely detectable at the surface of virus-specific T cells during the course of CMV or HIV-1 infection. By contrast, CD85j(+)CD8(+) T cells produce IFN-gamma upon TCR triggering, and represent a large fraction of virus-specific T cells. Thus, the cell surface expression of Ig-like inhibitory MHC class I receptors is associated with T cell engagement into various stages of the cytolytic differentiation pathway, and the cell surface expression of CD85j or KIR witnesses to the history of qualitatively and/or quantitatively distinct T cell activation events.  相似文献   

18.
We sought to delineate further the immunological significance of T lymphocytes infiltrating the valve leaflets in calcific aortic stenosis (CAS) and determine whether there were associated alterations in circulating T cells. Using clonotypic TCR β-chain length and sequence analysis we confirmed that the repertoire of tricuspid CAS valves contains numerous expanded T cell clones with varying degrees of additional polyclonality, which was greatest in cases with severe calcification. We now report a similar proportion of clonal expansions in the much younger bicuspid valve CAS cases. Peripheral blood flow cytometry revealed elevations in HLA-DR(+) activated CD8 cells and in the CD8(+)CD28(null)CD57(+) memory-effector subset that were significantly greater in both bicuspid and tricuspid CAS cases with more severe valve calcification. Lesser increases of CD4(+)CD28(null) T cells were identified, principally in cases with concurrent atherosclerotic disease. Upon immunostaining the CD8 T cells in all valves were mainly CD28(null), and CD8 T cell percentages were greatest in valves with oligoclonal repertoires. T cell clones identified by their clonotypic sequence as expanded in the valve were also found expanded in the circulating blood CD28(null)CD8(+) T cells and to a lesser degree in the CD8(+)CD28(+) subset, directly supporting the relationship between immunologic events in the blood and the valve. The results suggest that an ongoing systemic adaptive immune response is occurring in cases with bicuspid and tricuspid CAS, involving circulating CD8 T cell activation, clonal expansion, and differentiation to a memory-effector phenotype, with trafficking of T cells in expanded clones between blood and the valve.  相似文献   

19.
Heterologous vaccination based on priming with a plasmid DNA vector and boosting with an attenuated vaccinia virus MVA recombinant, with both vectors expressing the Leishmania infantum LACK antigen (DNA-LACK and MVA-LACK), has shown efficacy conferring protection in murine and canine models against cutaneus and visceral leishmaniasis, but the immune parameters of protection remain ill defined. Here we performed by flow cytometry an in depth analysis of the T cell populations induced in BALB/c mice during the vaccination protocol DNA-LACK/MVA-LACK, as well as after challenge with L. major parasites. In the adaptive response, there is a polyfunctional CD4(+) and CD8(+) T cell activation against LACK antigen. At the memory phase the heterologous vaccination induces high quality LACK-specific long-term CD4(+) and CD8(+) effector memory cells. After parasite challenge, there is a moderate boosting of LACK-specific CD4(+) and CD8(+) T cells. Anti-vector responses were largely CD8(+)-mediated. The immune parameters induced against LACK and triggered by the combined vaccination DNA/MVA protocol, like polyfunctionality of CD4(+) and CD8(+) T cells with an effector phenotype, could be relevant in protection against leishmaniasis.  相似文献   

20.
Following immunization with Plasmodium yoelii sporozoites, the CD8(+) T cell population specific for the SYVPSAEQI epitope expressed in sporozoite and liver stages of this malaria parasite revealed the existence of a short term Ag presentation process that translated into a single clonal burst. Further expansion of this CD8(+) T cell population in conditions of sustained Ag exposure and additional supply of naive cells was inhibited by regulatory mechanisms that were developed as early as 24-48 h after priming. Studies using mouse models for Plasmodium or influenza virus infections revealed that this mechanism is Ag specific and is mediated by activated CD8(+) T cells that inhibit the priming of naive cells. This interference of the priming of naive cells appeared to result from limited access to Ag-presenting dendritic cells, which become disabled or are eliminated after contact with activated cells. Thus, concomitantly with the development of their effector antimicrobial capacity, CD8(+) T cells also acquire a self-regulatory role that is likely to represent one of the earliest mechanisms induced in the course of an immune response and that limits the magnitude of the early expansion of CD8(+) T lymphocytes reactive to microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号