共查询到20条相似文献,搜索用时 0 毫秒
1.
Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes 总被引:60,自引:0,他引:60
Binding of tRNAPhe to ribosomes shields a set of highly conserved nucleotides in 16S rRNA from attack by a combination of structure-specific chemical probes. The bases can be classified according to whether or not their protection is strictly poly(U)-dependent (G529, G530, U531, A1408, A1492, and A1493) or poly(U)-independent (A532, G693, A794, C795, G926, 2mG966, G1338, A1339, U1381, C1399, C1400, and G1401). A third class (A790, G791, and A909) is shielded by both tRNA and 50S ribosomal subunits. Similar results are obtained when the protecting ligand is tRNAPhe E. Coli, tRNAPhe yeast, tRNAPhe E. Coli lacking its 3' terminal CA, or the 15 nucleotide anticodon stem-loop fragment of tRNAPhe yeast. Implications for structural correlates of the classic ribosomal A- and P-sites and for the possible involvement of 16S rRNA in translational proofreading are discussed. 相似文献
2.
The coding region of c-myc mRNA encompassing the coding region determinant (CRD) nucleotides (nts) 1705-1792 is critical in regulating c-myc mRNA stability. This is in part due to the susceptibility of c-myc CRD RNA to attack by an endoribonuclease. We have previously purified and characterized a mammalian endoribonuclease that cleaves c-myc CRD RNA in vitro. This enzyme is tentatively identified as a 35 kDa RNase1-like endonuclease. In an effort to understand the sequence and secondary structure requirements for RNA cleavage by this enzyme, we have determined the secondary structure of the c-myc CRD RNA nts 1705-1792 using RNase probing technique. The secondary structure of c-myc CRD RNA possesses five stems; two of which contain 4 base pairs (stems I and V) and three consisting of 3 base pairs (stems II, III, and IV). Endonucleolytic assays using the c-myc CRD and several c-myc CRD mutants as substrates led to the following conclusions: (i) the enzyme prefers to cleave in between the dinucleotides UA, CA, and UG in single-stranded regions; (ii) the enzyme is more specific towards UA dinucleotides. These properties further distinguish the enzyme from previously described mammalian endonuclease that cleaves c-myc mRNA in vitro. 相似文献
3.
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can recognize and cleave any target RNA that forms a precursor tRNA-like complex with another RNA. Various sets of RNA molecules were tested to identify the smallest RNA that can direct target RNA cleavage by 3' tRNase. A 3' half tRNAArgwas cleaved efficiently by 3' tRNase in the presence of small 5' half tRNAArgvariants, the D stem-loop region of which was partially deleted. Remarkably, 3' tRNase also cleaved the 3' half tRNAArgin the presence of a 7 nt 5' tRNAArg composed only of the acceptor stem region with a catalytic efficiency comparable with that of cleavage directed by an intact 5' half tRNAArg. The catalytic efficiency of cleavage directed by the heptamer decreased as the stability of the T stem-loop structures of 3' half tRNAArg variants decreased. No heptamer-directed cleavage of a 3' half tRNAArg without T stem base pairs was detected. A heptamer also directed cleavage of an HIV-1 RNA containing a stable hairpin structure. These findings suggest that in the presence of an RNA heptamer, 3' tRNase can discriminate and eliminate target RNAs that possess a stable hairpin adjacent to the heptamer binding sequence from a large complex RNA pool. 相似文献
4.
Bergstrom K Urquhart JC Tafech A Doyle E Lee CH 《Journal of cellular biochemistry》2006,98(3):519-537
Endonuclease-mediated mRNA decay appears to be a common mode of mRNA degradation in mammalian cells, but yet only a few mRNA endonucleases have been described. Here, we report the existence of a second mammalian endonuclease that is capable of cleaving c-myc mRNA within the coding region in vitro. This study describes the partial purification and biochemical characterization of this enzyme. Five major proteins of approximately 10-35 kDa size co-purified with the endonuclease activity, a finding supported by gel filtration and glycerol gradient centrifugation analysis. The enzyme is an RNA-specific endonuclease that degrades single-stranded RNA, but not double-stranded RNA, DNA or DNA-RNA duplexes. It preferentially cleaves RNA in between the pyrimidine and purine dinucleotides UA, UG, and CA, at the coding region determinant (CRD) of c-myc RNA. The enzyme generates products with a 3'hydroxyl group, and it appears to be a protein-only endonuclease. It does not possess RNase A-like activity. The enzyme is capable of cleaving RNAs other than c-myc CRD RNA in vitro. It is Mg(2+)-independent and is resistant to EDTA. The endonuclease is inactivated at and above 70 degrees C. These properties distinguished the enzyme from other previously described vertebrate endonucleases. 相似文献
5.
Bracken CP Szubert JM Mercer TR Dinger ME Thomson DW Mattick JS Michael MZ Goodall GJ 《Nucleic acids research》2011,39(13):5658-5668
The Ago2 component of the RNA-induced silencing complex (RISC) is an endonuclease that cleaves mRNAs that base pair with high complementarity to RISC-bound microRNAs. Many examples of such direct cleavage have been identified in plants, but not in vertebrates, despite the conservation of catalytic capacity in vertebrate Ago2. We performed parallel analysis of RNA ends (PAREs), a deep sequencing approach that identifies 5'-phosphorylated, polyadenylated RNAs, to detect potential microRNA-directed mRNA cleavages in mouse embryo and adult tissues. We found that numerous mRNAs are potentially targeted for cleavage by endogenous microRNAs, but at very low levels relative to the mRNA abundance, apart from miR-151-5p-guided cleavage of the N4BP1 mRNA. We also find numerous examples of non-miRNA-directed cleavage, including cleavage of a group of mRNAs within a CA-repeat consensus sequence. The PARE analysis also identified many examples of adenylated small non-coding RNAs, including microRNAs, tRNA processing intermediates and various other small RNAs, consistent with adenylation being part of a widespread proof-reading and/or degradation pathway for small RNAs. 相似文献
6.
The emerging disease SARS is caused by a novel coronavirus that encodes several unusual RNA-processing enzymes, including non-structural protein 15 (Nsp15), a hexameric endoribonuclease that preferentially cleaves at uridine residues. How Nsp15 recognizes and cleaves RNA is not well understood and is the subject of this study. Based on the analysis of RNA products separated by denaturing gel electrophoresis, Nsp15 has been reported to cleave both 5' and 3' of the uridine. We used several RNAs, including some with nucleotide analogs, and mass spectrometry to determine that Nsp15 cleaves only 3' of the recognition uridylate, with some cleavage 3' of cytidylate. A highly conserved RNA structure in the 3' non-translated region of the SARS virus was cleaved preferentially at one of the unpaired uridylate bases, demonstrating that both RNA structure and base-pairing can affect cleavage by Nsp15. Several modified RNAs that are not cleaved by Nsp15 can bind Nsp15 as competitive inhibitors. The RNA binding affinity of Nsp15 increased with the content of uridylate in substrate RNA and the co-factor Mn(2+). The hexameric form of Nsp15 was found to bind RNA in solution. A two-dimensional crystal of Nsp15 in complex with RNA showed that at least two RNA molecules could be bound per hexamer. Furthermore, an 8.3 A structure of Nsp15 was developed using cyroelectron microscopy, allowing us to generate a model of the Nsp15-RNA complex. 相似文献
7.
Kitano M Barnor JS Miyano-Kurosaki N Endo Y Yukita M Takeuchi H Tamura Y Takai K Nashimoto M Takaku H 《Nucleosides, nucleotides & nucleic acids》2001,20(4-7):719-722
We examined the suppression of virus expression by cleaveage of the HIV-1 RNA gene using a mammalian tRNA 3' processing endoribonuclease and an External Guide Sequence Oligozyme (EGS) in vivo. We constructed an EGS expression vector that used the tRNA(met) promoter as an expression cassette for EGS. The EGS expression vector was targeted to the upstream region of gag, region. The EGS expression vector was co-transfected into COS cells with the HIV-1 gene plasmid vector. As compared with the EGS non-expressing cells and the EGS expressing cells, the EGS expressing cells with the targeted gag start codon had a clearly decreased amount of the HIV-1 gag p24 protein. The EGS expressing cells with the targeted gag start codon showed effective suppression of HIV-1 gene expression. Thus, these studies describe novel gene targeting agents for the inhibition of gene expression and antiviral activity. 相似文献
8.
M Kitano N Miyano-Kurosaki Y Endo M Yukita H Takeuchi Y Tamura K Takai M Nashimoto H Takaku 《Nucleic acids symposium series》2000,(44):207-208
We examined the suppression of virus expression by cleavage of the HIV-1 RNA gene using a mammalian tRNA 3' processing endoribonuclease and an External Guide Sequence Oligozyme (EGS) in vivo. We constructed an EGS expression vector that used the tRNA(met) promoter as an expression cassette for EGS. The EGS expression vector was targeted to the upstream region of gag, region. The EGS expression vector was co-transfected into COS cells with the HIV-1 gene plasmid vector. As compared with the EGS non-expressing cells and the EGS expressing cells, the EGS expressing cells with the targeted gag start codon had a clearly decreased amount of the HIV-1 gag p24 protein. The EGS expressing cells with the targeted gag start codon showed effective suppression of HIV-1 gene expression. Thus, these studies describe novel gene targeting agents for the inhibition of gene expression and antiviral activity. 相似文献
9.
Katherine E. Sloan Sandy Mattijssen Simon Lebaron David Tollervey Ger J.M. Pruijn Nicholas J. Watkins 《The Journal of cell biology》2013,200(5):577-588
Human ribosome production is up-regulated during tumorogenesis and is defective in many genetic diseases (ribosomopathies). We have undertaken a detailed analysis of human precursor ribosomal RNA (pre-rRNA) processing because surprisingly little is known about this important pathway. Processing in internal transcribed spacer 1 (ITS1) is a key step that separates the rRNA components of the large and small ribosomal subunits. We report that this was initiated by endonuclease cleavage, which required large subunit biogenesis factors. This was followed by 3′ to 5′ exonucleolytic processing by RRP6 and the exosome, an enzyme complex not previously linked to ITS1 removal. In contrast, RNA interference–mediated knockdown of the endoribonuclease MRP did not result in a clear defect in ITS1 processing. Despite the apparently high evolutionary conservation of the pre-rRNA processing pathway and ribosome synthesis factors, each of these features of human ITS1 processing is distinct from those in budding yeast. These results also provide significant insight into the links between ribosomopathies and ribosome production in human cells. 相似文献
10.
Specific cleavage of target RNAs from HIV-1 with 5' half tRNA by mammalian tRNA 3' processing endoribonuclease. 总被引:1,自引:0,他引:1 下载免费PDF全文
M Nashimoto 《RNA (New York, N.Y.)》1996,2(6):523-524
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can be converted to an RNA cutter that recognizes four bases, with about a 65-nt 3'-truncated tRNA(Arg) or tRNA(Ala). The 3'-truncated tRNA recognizes the target RNA via four base pairings between the 5'terminal sequence and a sequence 1-nt upstream of the cleavage site, resulting in a pre-tRNA-like complex (Nashimoto M, 1995, Nucleic Acids Res 23:3642-3647). Here I developed a general method for more specific RNA cleavage using 3' tRNase. In the presence of a 36-nt 5' half tRNA(Arg) truncated after the anticodon, 3' tRNase cleaved the remaining 56-nt 3' half tRNA(Arg) with a 19-nt 3' trailer after the discriminator. This enzyme also cleaved its derivatives with a 5' extra sequence or nucleotide changes or deletions in the T stem-loop and extra loop regions, although the cleavage efficiency decreases as the degree of structural change increases. This suggests that any target RNA can be cleaved site-specifically by 3'tRNase in the presence of a 5' half tRNA modified to form a pre-tRNA-like complex with the target. Using this method, two partial HIV-1 RNA targets were cleaved site-specifically in vitro. These results also indicate that the sequence and structure of the T stem-loop domain are important, but not essential, for the recognition of pre-tRNAs by 3' tRNase. 相似文献
11.
Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms 下载免费PDF全文
The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism. 相似文献
12.
DNA replication and RNA transcription regulated by c-myc protein 总被引:1,自引:0,他引:1
M Sanae M Iguchi-Ariga H Ariga 《Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme》1988,33(11):1758-1765
13.
14.
Long 5' leaders inhibit removal of a 3' trailer from a precursor tRNA by mammalian tRNA 3' processing endoribonuclease. 下载免费PDF全文
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can remove a 3' trailer from various pre-tRNAs without 5' leader nucleotides. To examine how 5[prime] leader sequences affect 3' processing efficiency, we performed in vitro 3' processing reactions with purified pig 3' tRNase and pre-tRNAArgs containing a 13-nt 3' trailer and a 5[prime] leader of various lengths. The 3' processing was slightly stimulated by 5[prime] leaders containing up to 7 nt, whereas leaders of 9 nt or longer severely inhibited the reaction. Structure probing indicated that the 5' leader sequences had little effect on pre-tRNA folding. Similar results were obtained using pre-tRNA(Val)s containing a 5' leader of various lengths. We also investigated whether 3'tRNase can remove 3' trailers that are stably base-paired with 5' leaders to form an extended acceptor stem. Even such small 5' leaders as 3 and 6 nt, when base-paired with a 3' trailer, severely hindered removal of the 3' trailer by 3' tRNase. 相似文献
15.
Nancy D Rodgers Zuoren Wang Megerditch Kiledjian 《The Journal of biological chemistry》2002,277(4):2597-2604
The alpha-globin mRNA has previously been shown to be the target of an erythroid-enriched endoribonuclease (ErEN) activity which cleaves the mRNA within the 3'-untranslated region. We have currently undertaken a biochemical approach to purify this enzyme and have begun characterization of the enzyme to determine requirements for substrate recognition as well as optimal cleavage conditions. Through mutational analysis and truncations we show that a 26-nucleotide region of the alpha-globin 3'-untranslated region is an autonomous element that is both necessary and sufficient for cleavage by ErEN. Mutations throughout this region abolish cleavage activity by ErEN suggesting that the entire sequence is important for recognition and cleavage. ErEN is most active under biological salt concentrations and temperature and activity of the enzyme does not require cations. The size for ErEN was estimated by denaturing gel filtration analysis and is approximately 40 kDa. Interestingly, the exquisite specificity of ErEN cleavage became compromised with increased purity of the enzyme suggesting the involvement of other proteins in specificity of ErEN cleavage. Nondenaturing gel filtration of MEL extract demonstrated that ErEN is a component of an approximately 160 kDa complex implying that additional proteins may regulate ErEN activity and provide increased cleavage specificity. 相似文献
16.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes. 相似文献
17.
18.
Alaeddin Tafech 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》2007,1769(1):49-60
The coding region of c-myc mRNA encompassing the coding region determinant (CRD) nucleotides (nts) 1705-1792 is critical in regulating c-myc mRNA stability. This is in part due to the susceptibility of c-myc CRD RNA to attack by an endoribonuclease. We have previously purified and characterized a mammalian endoribonuclease that cleaves c-myc CRD RNA in vitro. This enzyme is tentatively identified as a 35 kDa RNase1-like endonuclease. In an effort to understand the sequence and secondary structure requirements for RNA cleavage by this enzyme, we have determined the secondary structure of the c-myc CRD RNA nts 1705-1792 using RNase probing technique. The secondary structure of c-myc CRD RNA possesses five stems; two of which contain 4 base pairs (stems I and V) and three consisting of 3 base pairs (stems II, III, and IV). Endonucleolytic assays using the c-myc CRD and several c-myc CRD mutants as substrates led to the following conclusions: (i) the enzyme prefers to cleave in between the dinucleotides UA, CA, and UG in single-stranded regions; (ii) the enzyme is more specific towards UA dinucleotides. These properties further distinguish the enzyme from previously described mammalian endonuclease that cleaves c-myc mRNA in vitro. 相似文献
19.
CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells 总被引:1,自引:0,他引:1
Ioannidis P Mahaira LG Perez SA Gritzapis AD Sotiropoulou PA Kavalakis GJ Antsaklis AI Baxevanis CN Papamichail M 《The Journal of biological chemistry》2005,280(20):20086-20093
The coding region determinant-binding protein/insulin-like growth factor II mRNA-binding protein (CRD-BP/IMP1) is an RNA-binding protein specifically recognizing c-myc, leader 3' IGF-II and tau mRNAs, and the H19 RNA. CRD-BP/IMP1 is predominantly expressed in embryonal tissues but is de novo activated and/or overexpressed in various human neoplasias. To address the question of whether CRD-BP/IMP1 expression characterizes certain cell types displaying distinct proliferation and/or differentiation properties (i.e. stem cells), we isolated cell subpopulations from human bone marrow, mobilized peripheral blood, and cord blood, all sources known to contain stem cells, and monitored for its expression. CRD-BP/IMP1 was detected only in cord blood-derived CD34(+) stem cells and not in any other cell type of either adult or cord blood origin. Adult BM CD34(+) cells cultured in the presence of 5'-azacytidine expressed de novo CRD-BP/IMP1, suggesting that epigenetic modifications may be responsible for its silencing in adult non-expressing cells. Furthermore, by applying the short interfering RNA methodology in MCF-7 cells, we observed, subsequent to knocking down CRD-BP/IMP1, decreased c-myc expression, increased IGF-II mRNA levels, and reduced cell proliferation rates. These data 1) suggest a normal role for CRD-BP/IMP1 in pluripotent stem cells with high renewal capacity, like the CB CD34(+) cells, 2) indicate that altered methylation may directly or indirectly affect its expression in adult cells, 3) imply that its de novo activation in cancer cells may affect the expression of c-Myc and insulin-like growth factor II, and 4) indicate that the inhibition of CRD-BP/IMP1 expression might affect cancer cell proliferation. 相似文献
20.
Wang Q 《Biochemistry. Biokhimii?a》2011,76(8):900-911
In mammalian cells two active enzymes, ADAR1 and ADAR2, carry out A-to-I RNA editing. These two editases share many common
features in their protein structures, catalytic activities, and substrate requirements. However, the phenotypes of the knockout
animals are remarkably different, which indicate the distinct functions they play. The most striking effect of ADAR1 knockout
is cell death and interruption of embryonic development that are not observed in ADAR2 knockout. Evidences have shown that
ADAR1 plays critical roles in the differentiating cells in embryo and adult tissues to support the cell’s survival and permit
their further differentiation and maturation. However, our knowledge in understanding of the mechanism by which ADAR1 exerts
its unique effects is very limited. Many efforts had been made trying to understand why ADAR1 is so important that it is indispensible
for animal survival, including studies that identify the RNA editing substrates and studies on non-editing mechanisms. The
interest of this review is focused on the question why ADAR1 and not ADAR2 is required for cell survival. Therefore, only
the data, published and unpublished, potentially connecting ADAR1 to its cell death effect is selectively cited and discussed
here. The features of cell death caused by ADAR1 deletion are summarized. Potential involvement of interferon and protein
kinase RNA-activated (PKR) pathways is proposed, but obviously more experimental evaluations are needed. 相似文献