首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
S J McClue  G Milligan 《FEBS letters》1990,269(2):430-434
In membranes of undifferentiated neuroblastoma x glioma hybrid cell line NG108-15, the apparent specific binding of [3H]yohimbine measured in the presence of 1 microM noradrenaline, was increased substantially by the presence of the poorly hydrolysed analogue of GTP, guanylyl-imidodiphosphate (Gpp[NH]p) or by preincubation of membranes with antibodies against the C-terminal decapeptide of the alpha subunit of the G-protein Gi2. Such an effect was not produced by antibodies against the equivalent region of Go alpha Gi3 alpha or Gs alpha or from non-immune serum. By contrast, total specific binding of [3H]yohimbine was not modified by co-incubation with Gpp[NH]p or by preincubation with the antibodies from any of the anti-G protein antisera. These results demonstrate a direct interaction of the alpha 2B adrenergic receptor of NG108-15 cells with Gi2.  相似文献   

2.
In membranes of neuroblastoma x glioma (NG108-15) hybrid cells, the photoreactive GTP analog, [alpha-32P] GTP azidoanilide, was incorporated into 39-41-kDa proteins comigrating in urea-containing sodium dodecyl sulfate-polyacrylamide gels with immunologically identified G-protein alpha-subunits, i.e. a 39-kDa Go alpha-subunit, a 40-kDa Gi2 alpha-subunit, and a 41-kDa Gi alpha-subunit of an unknown subtype. The synthetic opioid, D-Ala2,D-Leu5-enkephalin (DADLE), stimulated photolabeling of the 39-41-kDa proteins. In the presence of GDP, which increased the ratio of agonist-stimulated to basal photolabeling, DADLE at a maximally effective concentration stimulated photolabeling of the 39- and the 40-kDa protein 2-3-fold. Somatostatin, adrenaline, and bradykinin were less potent than DADLE and, to varying degrees, stimulated photolabeling of the 40-kDa protein more than that of the 39-kDa protein. Prostaglandin E1 was inactive. The present data represent direct evidence for an activation of endogenous Go and Gi2 via opioid receptors and other receptors in the native membrane milieu.  相似文献   

3.
The levels of the alpha-subunits of two GTP-binding proteins, Go and Gi2, were determined in neural and nonneural cloned cells by immunoassays. Go alpha was detected in all neural cells and some of nonneural cells, but not in HL-60 leukemic cells and PYS-2 teratocarcinoma-derived cells. The level of Go alpha was highest in the PC12 pheochromocytoma cells. Gi2 alpha was present in all types of cells tested, and its level was highest in the HL-60 cells and relatively high in glioma cells. Treatment of PC12 cells and neuroblastoma x glioma hybrid NG108-15 cells with nerve growth factor and forskolin, respectively, caused the extension of neuronal-like processes and increase in the level of Go alpha by 60-80%, but small changes in the levels of Gi2 alpha.  相似文献   

4.
We investigated the mechanisms of receptor-mediated stimulation of high-affinity GTPase activity in response to opioid peptides and to foetal-calf serum in membranes of the neuroblastoma X glioma hybrid cell line NG108-15. Increases in GTPase activity in response to both of these ligands was abolished by prior exposure of the cells to pertussis toxin. Pertussis toxin in the presence of [32P]NAD+ catalysed incorporation of radioactivity into a broad band of approx. 40 kDa in membranes prepared from untreated, but not from pertussis-toxin-pretreated, cells. Additivity studies indicated that the responses to opioid peptides and to foetal-calf serum were mediated by separate guanine-nucleotide-binding proteins (G-proteins). Whereas opioid peptides produced an inhibition of adenylate cyclase in membranes of untreated cells, foetal-calf serum did not. Affinity-purified antibodies which recognize the C-terminus of the inhibitory G-protein identified a 40 kDa polypeptide in membranes of NG108-15 cells. These antibodies attenuated opioid-stimulated high-affinity GTPase activity, but did not markedly affect the response to foetal-calf serum. We conclude that receptors for the opioid peptides function via the inhibitory G-protein (Gi), whereas foetal-calf serum activates a second pertussis-toxin-sensitive G-protein, which has a C-terminal sequence significantly different from that of Gi.  相似文献   

5.
Treatment of NG108-15 neuroblastoma x glioma cells (24 h) with cholera toxin (0.1-10 micrograms/ml) resulted in a concentration-dependent reduction of the membrane levels of subunits of GTP-binding regulatory proteins (G proteins), as determined by quantitative immunoblot procedures. The extent of reduction differed for different types of subunits: the levels of Go alpha and G beta 1 were reduced by 40-50%, whereas those of G alpha common immunoreactivity and Gi2 alpha were only reduced by 10-20% following treatment with 10 micrograms/ml cholera toxin. This effect of the toxin could not be mimicked by incubation with the resolved B oligomer of cholera toxin, nor by exposure of cells to agents able to raise the intracellular levels of cAMP. Basal adenylate cyclase was stimulated in a biphasic manner by cholera toxin, being stimulated at low concentrations (0.01-10 ng/ml) and then decreased at high (0.1-10 micrograms/ml) concentrations. Thus, the down regulation of G-protein subunits produced by cholera toxin requires its (ADP-ribosyl)transferase activity but does not result from a cAMP-mediated mechanism. The toxin-mediated decrease of Go alpha in the membrane was correlated with a diminution of opioid-receptor-mediated stimulation of high-affinity GTPase activity, suggesting that opioid receptors interact with Go in native membranes of NG108-15 cells. Northern-blot analysis of cytoplasmic RNA prepared from cells treated with cholera toxin showed that the levels of mRNA coding for G beta 1 did not change. Thus, the cholera-toxin-induced decrease of G-protein subunits may not result from an alteration in mRNA levels, but may involve a direct effect of the toxin on the process of insertion and/or clearance of G proteins into and/or from the membrane. These data indicate that cholera toxin, besides catalyzing the ADP-ribosylation of Gs and Gi/Go types of G proteins, can also reduce the steady state levels of Go alpha and G beta 1 subunits in the membrane and thus alter by an additional mechanism the function of inhibitory receptor systems.  相似文献   

6.
7.
Mouse neuroblastoma x rat glioma hybrid cells (NG108-15) express an opioid receptor of the delta subclass which both stimulates high-affinity GTPase activity and inhibits adenylate cyclase by interacting with a pertussis-toxin-sensitive guanine-nucleotide-binding protein(s) (G-protein). Four such G-proteins have now been identified without photoreceptor-containing tissues. We have generated anti-peptide antisera against synthetic peptides which correspond to the C-terminal decapeptides of the alpha-subunit of each of these G-proteins and also to the stimulatory G-protein of the adenylate cyclase cascade (Gs). Using these antisera, we demonstrate the expression of three pertussis-toxin-sensitive G-proteins in these cells, which correspond to the products of the Gi2, Gi3 and Go genes, as well as Gs. Gi1, however, is not expressed in detectable amounts. IgG fractions from each of these antisera and from normal rabbit serum were used to attempt to interfere with the interaction of the opioid receptor with the G-protein system by assessing ligand stimulation of high-affinity GTPase activity, inhibition of adenylate cyclase activity and conversion of the receptor to a state which displays reduced affinity for agonists. The IgG fraction from the antiserum (AS7) which specifically identifies Gi2 in these cells attenuated the effects of the opioid receptor. This effect was complete and was not mimicked by any of the other antisera. We conclude that the delta-opioid receptor of these cells interacts directly and specifically with Gi2 to cause inhibition of adenylate cyclase, and that Gi2 represents the true Gi of the adenylate cyclase cascade. The ability to measure alterations in agonist affinity for receptors following the use of specific antisera against a range of G-proteins implies that such techniques should be applicable to investigations of the molecular identity of the G-protein(s) which interacts with any receptor.  相似文献   

8.
Exposure of neuroblastoma x glioma hybrid (NG108-15) cells to low concentrations of cholera toxin produced a stimulation of both basal and forskolin-amplified adenylate cyclase activity in membranes prepared from these cells. Higher concentrations of cholera-toxin reversed this effect. Mn2+ activation of adenylate cyclase indicated that this effect was not due to a modification of the intrinsic activity of this enzyme. Cholera toxin was demonstrated to produce a concentration and time-dependent loss of GS alpha from membranes of these cells. Loss of GS alpha from membranes of these cells was preceded by its ADP-ribosylation. The effects of cholera toxin were specific for GS alpha, as no alterations in levels of the pertussis toxin-sensitive G-proteins Gi2, Gi3 and Go, were noted in parallel. Equally, no alteration in levels of G-protein beta-subunit were produced by the cholera toxin treatment. These experiments demonstrate that cholera toxin-catalysed ADP-ribosylation does not simply maintain an activated population of GS at the plasma membrane and that alterations in levels of GS at the plasma membrane can modify adenylate cyclase activity.  相似文献   

9.
We have characterized the pertussis toxin substrate in NG 108-15 cell membranes using site-specific antisera and ADP-ribosylation. Cell membranes contain two pertussis toxin-sensitive guanine nucleotide-binding protein alpha-subunits (G alpha) whose Rf values in gel electrophoresis coincide with those of G alpha o and G alpha i2. The total quantity of Gi and Go immunoreactivity amounted to 24.3 +/- 2.8 pmol/mg, whereas only 1.5 +/- 0.2 pmol/mg are capable of undergoing ADP-ribosylation catalyzed by pertussis toxin. Pretreatment of cells with the agonist [D-Ala2,D-Leu2]-enkephalin (DADLE) for 24 h and DADLE or morphine for 72 h did not alter the incorporation of ADP-ribose or the immunoreactive amount of Gi and Go subunits. However, pretreatment for 72 h with naloxone increased the incorporation of ADP-ribose without an apparent change in affinity or in the immunochemically determined protein levels of Gi and Go. This indicates that the process of down-regulation and desensitization of the delta-opioid receptor neither requires quantitative alterations in the levels of Gi and Go nor changes in the degree of coupling among their subunits. In contrast, chronic exposure to antagonists seems to alter the degree of precoupling between alpha- and beta-subunits of Gi and/or Go.  相似文献   

10.
Differentiation of 3T3-L1 cells from fibroblasts to adipocytes is accompanied by increased adenylate cyclase response to lipolytic agents. We used pertussis toxin and specific antibodies to measure the inhibitory guanine nucleotide-binding protein, Gi, and the novel G-protein, Go, in membranes from 3T3-L1 cells. Pertussis toxin-dependent labeling of a 39-40 kDa protein showed an initial 30% rise, followed by an 80% fall during differentiation. Immunoblots showed that 3T3-L1 cells contain Go, as well as Gi, and that changes in the former parallel the changes in pertussis toxin labeling. Changes in Gi and GO may contribute to altered adenylate cyclase response during 3T3-L1 cell differentiation.  相似文献   

11.
Using a universal signaling assay employing G-protein chimeras comprising the C-terminal five amino acids of Gi1/2, Gi3, Go, and Gz fused to Gq, the calcium mobilizing G-protein, we explored the role of the C-terminus of Gi family G-proteins as a determinant for 5-HT(1A) receptor functional coupling. Co-expression of the 5-HT(1A) receptor with each of the Gq/Gi family chimeras resulted in a concentration-dependent increase in calcium upon addition of 5-HT, although the coupling efficiency differed dramatically. Gq/Gi3 resulted in the most efficient coupling based on both potency and relative maximum response to 5-HT. Gq/Go also produced efficient coupling in terms of relative 5-HT efficacy (76% of the Gq/Gi3 maximum response), although 5-HT exhibited 4-fold lower agonist potency, and Gq/Gz and Gq/Gi1/2 conferred poor functional coupling. Agonist potencies and relative efficacies determined for a number of 5-HT(1A) receptor agonists using Gq/Gi3 coupling were significantly weaker than those described previously for coupling through the native G-protein. These results indicate the C-terminus of Gi3 as an important determinant for coupling to the 5-HT(1A) receptor, while the reduced functional agonist activities suggest additional motifs participate in receptor/G-protein coupling.  相似文献   

12.
Somatostatin (SST) receptors activate potassium channels, stimulate protein phosphatases, inhibit adenylate cyclase and close calcium channels. These multiple effects are controlled by guanine nucleotide binding (G) proteins of the pertussis toxin-sensitive Gi and Go types. In the present study we have identified the G proteins coupling with brain SST receptors. To this end, brain SST receptors were solubilized in G-protein coupled form. Binding of the SST analogue MK 678 to the solubilized receptor was completely inhibited by guanosine 5'-O-thiotriphosphate (IC50 = 100 nM), reflecting decreased receptor affinity for agonist following uncoupling of the receptor and G protein(s). Antibodies raised against specific COOH-terminal peptides of the G proteins Gi(1-3), Go, and Gz were used to probe for SST receptor-G protein coupling in this system. Antibodies binding to the COOH-terminal regions of Gi1 and Gi2 (antibody AS) and Gi3 (antibody EC) inhibited binding of 125I-MK 678 (75 pM) by 57 +/- 4% and 48 +/- 5%, respectively. The effects of these antibodies were concentration-dependent and additive, such that in combination AS and EC completely inhibited binding. Antibodies binding to the COOH-terminal region of Go (GO) and Gz (QN) did not affect binding of 125I-MK 678, indicating that neither Go nor Gz are associated with the brain SST receptor. Prelabeling of the receptor with 125I-MK 678 prior to addition of antibody induced the formation of a "locked conformation" of the agonist-bound receptor-G protein complex which was insensitive to antibody. In conclusion, Gi1 and/or Gi2 and Gi3 are coupled in approximately equal proportions to the brain 125I-MK 678-binding SST receptor, accounting for all of the G protein coupling of this receptor.  相似文献   

13.
In the rat pituitary cell line GH3, carbachol inhibits PRL secretion in a pertussis toxin-sensitive manner. For elucidation of the underlying mechanisms, we studied the effect of carbachol on voltage-dependent Ca2+ currents. Under voltage-clamp conditions, carbachol inhibited whole-cell Ca2+ currents by about 25%. This inhibitory action of carbachol was not observed in cells treated with pertussis toxin, indicating the involvement of a pertussis toxin-sensitive G-protein. In membranes of GH3 cells, carbachol stimulated a pertussis toxin-sensitive high-affinity GTPase. In immunoblot experiments with peptide antisera, we identified two forms of the Gi alpha-subunit (41 and 40 kDa) and two forms of the Go alpha-subunit (40 and 39 kDa). The 40-kDa Gi alpha-subunit was recognized by an antibody specific for the Gi2 alpha-subunit, and the 39-kDa Go alpha-subunit was detected by an antibody specific for the Go2 alpha-subunit. Incubation of membranes with the photoreactive GTP analog [alpha-32P]GTP azidoanilide resulted in photo-labelling of 40- and 39-kDa pertussis toxin substrates comigrating with G-protein alpha-subunits of the corresponding molecular masses. Carbachol dose-dependently stimulated incorporation of the photoreactive GTP analog into the 39-kDa pertussis toxin substrate and, to a lesser extent, into 40-kDa pertussis toxin substrates. The data indicate that muscarinic receptors of GH3 cells couple preferentially to Go, which is likely to be involved in the inhibition of secretion, possibly by conferring an inhibitory effect to voltage-dependent Ca2+ channels.  相似文献   

14.
The predominant guanine nucleotide-binding protein (G-protein) of bovine lung membranes, termed GL, has been purified and compared biochemically, immunochemically and functionally with Gi and Go purified from rabbit brain. The purified GL appeared to have a similar subunit structure to Gi and Go, being composed of alpha, beta and possibly gamma subunits. On Coomassie Blue-stained SDS/polyacrylamide gels and immunoblots, the alpha subunit of GL (GL alpha) displayed an intermediate mobility (40 kDa) between those of Gi and Go (Gi alpha and Go alpha). GL alpha was [32P]ADP-ribosylated in the presence of pertussis toxin and [32P]NAD+. Analysis of [32P]ADP-ribosylated alpha subunits by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing showed that GL alpha was distinct from Gi alpha and Go alpha, but very similar to the predominant G-protein in neutrophil membranes. Immunochemical characterization also revealed that GL was distinct from Gi and Go, but was indistinguishable from the G-protein of neutrophils, which has been tentatively identified as Gi2 [Goldsmith, Gierschik, Milligan, Unson, Vinitsky, Maleck & Spiegel (1987) J. Biol. Chem. 262, 14683-14688]. In functional studies, higher Mg2+ concentrations were required for guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S]) binding to GL than were required for nucleotide binding to Go, whereas Gi showed a Mg2+-dependence similar to that of GL. The kinetics of GTP[35S] binding to GL was quite different from those of Gi and Go; t1/2 values of maximal binding were 30, 15 and 5 min respectively. In contrast, the rate of hydrolysis of [gamma-32P]GTP by GL (t1/2 approximately 1 min) was approx. 4 times faster than that by Gi or Go. These results indicated that the predominant G-protein purified from lung is structurally and functionally distinct from Gi and Go of brain, but structurally indistinguishable from Gi2 of neutrophils.  相似文献   

15.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

16.
Incubation of the neuroblastoma x glioma hybrid cell line NG108-15 in tissue culture with dibutyryl cyclic AMP (1 mM) for up to 8 days produced a morphological differentiation of the cells, during which they extended neurite-like processes. Pertussis-toxin-catalysed ADP-ribosylation indicated that amounts of guanine-nucleotide-binding proteins (G-proteins), which are substrates for this toxin, were approximately doubled in membranes from the 'differentiated' cells in comparison with the control cells. Immunoblotting of membranes derived from either untreated or dibutyryl cyclic AMP-treated cells with anti-peptide antisera specific for the alpha subunits of the pertussis-toxin-sensitive G-proteins Gi and Go demonstrated that amounts of these G-proteins were reciprocally modulated during the differentiation process. In comparison with the untreated cells, the amount of Gi in the 'differentiated' cells was decreased, whereas the amount of Go was substantially increased. Stimulation of high-affinity GTPase activity in response to opioid peptides, which in this cell line interact with an opioid receptor of the delta subclass, was much decreased, and inhibition of adenylate cyclase activity was almost entirely attenuated in the 'differentiated'-cell membranes in comparison with membranes of untreated cells. Opioid receptor number was also decreased in membranes of the dibutyryl cyclic AMP-treated cells in comparison with the control cells. These data demonstrate that relatively small changes in the observed pattern of pertussis-toxin-catalysed ADP-ribosylation of membranes can mask more dramatic alterations in amounts of the individual pertussis-toxin-sensitive G-proteins, and further demonstrate the importance of methodologies able to discriminate between the different gene products.  相似文献   

17.
mRNA prepared from various tissues and cultured cells was injected into Xenopus laevis oocytes. Three to five days after injection, the response of the oocytes to the peptide bradykinin was monitored. The oocytes were voltage clamped and the membrane currents generated on application of agonist were recorded. mRNA from NG108-15, rat uterus, and human fibroblast cell line WI38 gave similar responses to bradykinin (1 microM), with an initial inward current (10-20 nA) followed by a prolonged period of membrane current oscillations. The same pattern of response was given by total RNA from rat dorsal root ganglia. No response to bradykinin (10 microM) was recorded from oocytes injected with rat brain mRNA, although these oocytes gave peak inward currents of about 75 nA in response to serotonin (10 microM). mRNA from both NG108-15 cells and rat uterus was fractionated on sucrose gradients. This resulted in an approximately five-fold increase in the size of the response compared to that given by unfractionated mRNA. The largest responses were given by mRNA fractions with a size of approximately 4.5 kb. Data were obtained consistent with the expression of both B1 and B2 receptors by WI38 human fibroblasts and with the expression of only the B2 type of receptor by NG108-15 cells.  相似文献   

18.
Using an antibody generated against the opiate receptor on NG108-15 cells, we recently purified the putative receptor from this hybrid cell line. We herein report that the purified receptor complex specifically binds tritiated cis-(+)-3-methylfentanylisothiocyanate (SUPERFIT), with the predominant binding associated with a 58 kDa polypeptide chain. Consistent with these findings is the in situ labeling of a 58 kDa protein with [3H]SUPERFIT on NG108-15 cells.  相似文献   

19.
Electrophysiological evidence shows that voltage-dependent calcium channel (VDCC) activity can be regulated by a large number of neurotransmitters. In particular, guanine nucleotide binding regulatory protein (G protein)-mediated inhibitory modulation of the channel activity has been deduced from evidence that GTP analogues and purified G proteins are able to mimic this effect. The G proteins involved are pertussis toxin (PTx) sensitive. The purpose of the present study was to investigate, using biochemical techniques, whether G protein activation modulates the recognition site for omega-conotoxin GVIA (CgTx), a peptide neurotoxin that selectively labels a population of high-threshold VDCC. Undifferentiated and differentiated (1 mM dibutyryl cyclic AMP, 4 days) NG 108-15 cells were used. In both crude cellular extracts specific binding of 125I-CgTx was characterized. Differentiation induced a sixfold increase in the number of binding sites and doubled the KD value. The in vitro addition of guanylylimidodiphosphate (GMP-PNP; a nonhydrolyzable analogue of GTP) to extracts prepared from differentiated cells reduced the 125I-CgTx binding by 48%. This effect, observed in undifferentiated cells as well, was also caused by other triphosphate guanine nucleotides, such as GTP, but not by guanosine 5'-O-(2-thiodiphosphate) or adenine nucleotides. Treatment of the cells with PTx prevented the GMP-PNP effect. Moreover, the results obtained after preincubation with specific antisera raised against the alpha subunits of Gi1-2 and Go suggest that Go is the G protein responsible for the observed effect.  相似文献   

20.
G-protein mRNA levels during adipocyte differentiation   总被引:1,自引:0,他引:1  
G-protein-mediated transmembrane signaling in 3T3-L1 cells is modulated by differentiation. The regulation of G-protein expression in differentiating 3T3-L1 cells was probed at the level of mRNA by DNA-excess solution hybridization. Pertussis toxin-catalyzed ADP-ribosylation of G-protein alpha-subunits increased as fibroblasts differentiate to adipocytes. Steady-state levels of mRNA for Gi alpha 2 and Go alpha, in contrast, declined sharply. Immunoblotting with antipeptide antibodies specific for Gi alpha 2, too, revealed a decline in the steady-state expression of this pertussis toxin substrate. ADP-ribosylation of Gs alpha by cholera toxin was less in the adipocyte than fibroblast. Analysis by immunoblotting revealed only a modest decline in Gs alpha. Analysis of mRNA levels also demonstrated a decline for Gs alpha. mRNA levels for the G beta-subunits rose initially (25%) on day 1, declined from day 1 to day 3, and remained 25% lower in adipocytes than in fibroblasts. In 3T3-L1 adipocytes the molar amounts of subunit mRNAs were: 60.6 (Gs alpha); 2.1 (Gi alpha 2); and 1.5 (Go alpha) amol/microgram total cellular RNA. In rat fat cells these mRNA levels were 19.4 (Gs alpha); 7.0 (Gi alpha 2); and 2.3 (Go alpha). These data demonstrate that for Gi alpha 2 and Go alpha alike mRNA and protein expression decrease, not increase, in differentiation. A substrate for pertussis toxin other than Gi alpha 2 and Go alpha appears to be responsible for the increase in toxin-catalyzed labeling that accompanies differentiation of 3T3-L1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号