首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism(s) by which heat shock protein 25 (hsp25) protects cells from stress may involve one or more of the biochemical properties attributed to hsp25 and other small M(r) hsp. In this report, structural and functional properties of an N-terminal 33 amino acid deletion variant of hsp25 (termed hsp25.c) were considered by comparison with hsp25. 6-His tagged recombinant hsp25 and hsp25.c (termed (H6)hsp25.a and (H6)hsp25.c) were expressed and purified. Oligomeric proteins formed and possessed properties previously attributed to hsp25. The 33 amino acid deletion represented by hsp27.c did not affect the ability of the recombinant protein to act as an inhibitor of elastase, as a molecular chaperone in the refolding of denatured citrate synthase, or as an actin-binding protein. The overexpression of either hsp25 or hsp25.c, enhanced the stress resistance of stable transformed eukaryotic cells. This N-terminal variant protein may be used in further cellular and biochemical assessment of hsp25 oligomerization and function.  相似文献   

2.
The eukaryotic translation initiation factor (eIF) 4E, is regulated by modulating both its phosphorylation and its availability to interact with the scaffold protein, eIF4G, to form the mature eIF4F complex. Here we show that treatment of C2C12 myoblasts with the proteasomal inhibitor, MG132 (N-carbobenzoxyl-Leu-Leu-leucinal), resulted in an early decrease in protein synthesis rates followed by a partial recovery, reflecting the reprogramming of translation. The early inhibition of protein synthesis was preceded by a transient increase in eIF2alpha phosphorylation, followed by a sustained increase in eIF4E phosphorylation. Inhibition of eIF4E phosphorylation with CGP57380 failed to prevent translational reprogramming or the moderate decrease in eIF4F complexes at later times. Prolonged incubation with MG132 resulted in the increased expression of heat shock protein (hsp)25, alphaB-crystallin and hsp70, with a population of hsp25 associating with the eIF4F complex in a p38 mitogen-activated protein kinase-dependent manner. Under these conditions, eIF4GI, and to a lesser extent eIF4E, re-localized from a predominantly cytoplasmic distribution to a more perinuclear and granular staining. Although MG132 had little effect on the colocalization of eIF4E and eIF4GI, it promoted the SB203580-sensitive association of eIF4GI and hsp25, an effect not observed with alphaB-crystallin. Addition of recombinant hsp25 to an in vitro translation assay resulted in stimulation of on-going translation and a moderate decrease in de novo translation, indicating that this modified eIF4F complex containing hsp25 has a role to play in recovery of mRNA translation following cellular stress.  相似文献   

3.
4.
Native phosphorylated mouse small heat shock protein hsp25 from Ehrlich ascites tumor cells was isolated and the in vivo phosphorylation sites of the protein were determined. Furthermore, native hsp25 was phosphorylated by the endogenous kinase(s) in a cell-free system as well as recombinant hsp25 was phosphorylated in vitro by protein kinase C and catalytic subunit of cAMP-dependent protein kinase. The two major phosphorylation sites of native and recombinant hsp25 were determined as Ser-15 and Ser-86. There are no differences in the hsp25 phosphorylation sites phosphorylated by the protein kinase C, the catalytic subunit of cAMP-dependent protein kinase and the unknown intracellular kinase(s). The serine residues identified exist in all known small mammalian stress proteins and are located in the conserved kinase recognition sequence Arg-X-X-Ser.  相似文献   

5.
Heat shock protein 90 (hsp90) is a chaperone required for the proper folding and trafficking of many proteins involved in signal transduction. We tested whether hsp90 plays a role as a chaperone for GC-A, the membrane guanylate cyclase that acts as a receptor for atrial natriuretic peptide (ANP). When cultured cells expressing recombinant GC-A were treated with geldanamycin, an inhibitor of hsp90 function, the ANP-stimulated production of cyclic GMP was inhibited. This suggested that hsp90 was required for GC-A processing and/or stability. A physical association between hsp90 and GC-A was demonstrated in coimmunoprecipitation experiments. Treatment with geldanamycin disrupted this association and led to the accumulation of complexes containing GC-A and heat shock protein 70 (hsp70). Protein folding pathways involving hsp70 and hsp90 include several pathway-specific co-chaperones. Complexes between GC-A and hsp90 contained the co-chaperone p50(cdc37), typically found associated with protein kinase.hsp90 heterocomplexes. GC-A immunoprecipitates did not contain detectable amounts of Hop, FKBP51, FKBP52, PP5, or p23, all co-chaperones found in hsp90 complexes with other signaling proteins. The association of hsp90 and p50(cdc37) with GC-A was dependent on the kinase homology domain of this receptor but not on its ANP-binding, transmembrane, or guanylate cyclase domains. The data suggest that GC-A is regulated by hsp90 complexes similar to those involved in the maturation of protein kinases.  相似文献   

6.
To better understand assembly mechanisms of progesterone receptor (PR) complexes, we have developed a cell-free system for studying PR interactions with the 90- and 70-kDa heat shock proteins (hsp90 and hsp70), and we have used this system to examine requirements for hsp90 binding to PR. Purified chick PR, free of hsp90 and immobilized on an antibody affinity resin, will rebind hsp90 in rabbit reticulocyte lysate when several conditions are met. These include: 1) absence of progesterone, 2) elevated temperature (30 degrees C), 3) presence of ATP, and 4) presence of Mg2+. We have obtained maximal hsp90 binding to receptor when lysate is supplemented with 3 mM MgCl2 and an ATP-regenerating system. ATP depletion of lysate by dialysis or by enzymatic means blocks hsp90 binding to PR; likewise, addition of EDTA to lysate blocks hsp90 binding, but binding is restored by the addition of excess Mg2+. Addition to lysate of monoclonal antibody against hsp70 inhibits hsp90 binding to PR and destabilizes preformed complexes. Stabilization of hsp90-receptor complexes also requires ATP, indicating that ATP and hsp70 are needed to form and to maintain hsp90 complexes. Hormone-dependent activation of reconstituted receptor complexes was also examined. The addition of progesterone to the reticulocyte lysate promotes dissociation of hsp90 and hsp70 from the receptor. This also appears to require ATP and dissociation is most efficient in the presence of an ATP-regenerating system. In conclusion, these studies indicate that PR-hsp90 complexes do not self-assemble; instead, assembly is probably a multistep process requiring ATP and other cellular factors.  相似文献   

7.
High molecular weight heat shock proteins (HSPs), hsp110 and grp170, derived from cancer cells have been previously shown to elicit tumor-specific immunity. This phenomenon is attributed to the antigenic peptides associated with the HSPs. Based on the unique chaperoning properties of these HSPs, a new vaccination strategy has been recently developed to elicit antigen-specific antitumor immunity. This approach utilizes tumor-associated antigens naturally complexed to these highly efficient molecular chaperones under heat shock conditions. This chapter focuses on the methodologies of these two vaccine strategies: I. purification of hsp110 and grp170 from tumor tissue or cell lines; II. generation and characterization of in vitro HSP-antigen complexes by heat shock using recombinant HSPs derived from a baculovirus protein expression system.  相似文献   

8.
Rat genome was assayed for the presence of hsp70 gene-related sequences. Southern blots prepared from rat DNA digested with EcoRI or HindIII restriction endonucleases were hybridized with mouse, human and fruit fly hsp 70 gene probes at increasing stringencies. At the stringency which allows sequences divergent up to about 30% to form stable complexes all three probes detected 25–30 restriction fragments. Increased stringency of the hybridization reduced the number of detectable bands to a few and among them the DNA fragments hybridizing specifically either with mouse or human hsp70 gene probes were detected. Most of the genomic fragments containing hsp70 gene-related sequences were subsequently isolated by screening the rat genomic library with mouse hsp70 gene probe. 168 positive clones were plaque purified and on the basis of the restriction and hybridization pattern we deduced that inserts represented 20 different genomic regions. Partial restriction maps of all isolated genomic fragments were constructed and regions containing hsp70 gene related as well as highly repetitive DNA sequences were localized. A putative sequence rearrangement in the proximity of the hsp70 gene-related sequence was detected in one of the isolated genomic segments.  相似文献   

9.
Treatment of rat liver cytosol with hydrogen peroxide (H2O2) or sodium molybdate (MoO4(2-)) inhibits thermal inactivation of glucocorticoid receptor steroid-binding capacity at 25 degrees C. Dithiothreitol (DTT) prevents the stabilization of receptors by H2O2. Heating (25 degrees C) of immune pellets formed by immunoadsorption of L-cell murine glucocorticoid receptor complexes to protein-A-Sepharose with an anti-receptor monoclonal antibody (BuGR2) results in dissociation of the M 90,000 heat shock protein (hsp90) from the steroid binding protein. Such thermal-induced dissociation of hsp90 is inhibited by H2O2. Pretreatment of immunoadsorbed receptor complexes with the thiol derivatizing agent, methyl methanethiosulfonate (MMTS) prevents the ability of H2O2 to stabilize the hsp90-receptor interaction. These data suggest a role for hsp90 in maintaining an active steroid-binding conformation of the glucocorticoid receptor.  相似文献   

10.
The assembly of progesterone receptor (PR) heterocomplexes in vitro involves at least eight components of the molecular chaperone machinery, and as earlier reports have shown, these proteins exhibit complex, dynamic, but ordered, interactions with one another and PR. Using the selective hsp90 binding agent geldanamycin (GA), we have found that PR assembly in vitro can be arrested at a previously observed intermediate assembly step. Like mature PR complexes, the intermediate complexes contain hsp90, but they differ from mature complexes by the presence of hsp70, p60, and p48 and the absence of immunophilins and p23. Arrest of PR assembly is likely due to GA's ability to directly block binding of p23 to hsp90. An important functional consequence of GA-mediated assembly arrest in vitro is the inability of the resulting PR complexes to bind progesterone, despite the presence of hsp90 in the receptor complexes. The biological significance of the in vitro observations is demonstrated by GA's ability to (i) rapidly block PR's hormone binding capacity in intact cells and (ii) alter the composition of COS cell PR complexes in a manner similar to that observed during in vitro reconstitutions. An updated model for the cyclic assembly pathway of PR complexes that incorporates the present findings with earlier results is presented.  相似文献   

11.
Mutational analysis of the hsp70-interacting protein Hip.   总被引:4,自引:1,他引:3       下载免费PDF全文
The hsp70-interacting protein Hip participates in the assembly pathway for progesterone receptor complexes. During assembly, Hip appears at early assembly stages in a transient manner that parallels hsp70 interactions. In this study, a cDNA for human Hip was used to develop various mutant Hip forms in the initial mapping of functions to particular Hip structural elements. Hip regions targeted for deletion and/or truncation included the C-terminal region (which has some limited homology with Saccharomyces cerevisiae Sti1 and its vertebrate homolog p60), a glycine-glycine-methionine-proline (GGMP) tandem repeat, and a tetratricopeptide repeat (TPR). Binding of Hip to hsp70's ATPase domain was lost with deletions from the TPR and from an adjoining highly charged region; correspondingly, these Hip mutant forms were not recovered in receptor complexes. Truncation of Hip's Sti1-related C terminus resulted in Hip binding to hsp70 in a manner suggestive of a misfolded peptide substrate; this hsp70 binding was localized to the GGMP tandem repeat. Mutants lacking either the C terminus or the GGMP tandem repeat were still recovered in receptor complexes. Truncations from Hip's N terminus resulted in an apparent loss of Hip homo-oligomerization, but these mutants retained association with hsp70 and were recovered in receptor complexes. This mutational analysis indicates that Hip's TPR is required for binding of Hip with hsp70's ATPase domain. In addition, some data suggest that hsp70's peptide-binding domain may alternately or concomitantly bind to Hip's GGMP repeat in a manner regulated by Sti1-related sequences.  相似文献   

12.
Certain heat shock proteins are regulated by steroid hormones and are associated with oestrogen receptor function in reproductive tissues, indicating that these proteins have a role during implantation, decidualization and placentation. In the present study, the expression of hsp25, hsp70 and oestrogen receptor alpha were examined by immunohistochemistry in oviducts from rats during neonatal development, the oestrous cycle and during early pregnancy. Oestrogen receptor alpha was the first protein observed in the neonatal oviduct, and its expression preceded that of hsp70 and hsp25. Although these heat shock proteins have been associated with the oestrogen receptor, this study showed that during early development of the oviduct, the receptor protein was not associated with the concomitant expression of hsp25 and hsp70. However, these heat shock proteins were expressed when oviductal cells became differentiated. In the adult oviduct, hsp70 was more abundant than hsp25, moreover, there were no significant modifications in expression of hsp25 during the oestrous cycle. In contrast, the expression of hsp70 was significantly higher in epithelial cells during dioestrus, when the maximum amount of oestrogen receptor alpha was also observed. Therefore, the present study shows that hsp70, but not hsp25, is an oviductal protein modulated by the oestrous cycle and that it is a protein marker for specific phases of the oestrous cycle. In addition, hsp70 was more responsive to the hormonal changes in the infundibulum and ampullar regions of the oviduct. During early pregnancy, hsp25 expression was downregulated (unlike in the endometrium), whereas hsp70 was relatively abundant in the oviduct. hsp70 was observed in all functional segments of the oviduct during pregnancy, indicating that in the oviduct, this protein is modulated by oestrogens and progesterone and possibly by other pregnancy-related hormones.  相似文献   

13.
The dephosphorylation of the mouse small heat shock protein hsp25 within an extract obtained from Ehrlich ascites tumor cells is inhibited by the calcium chelator EGTA and at concentrations of microcystin-LR which are characteristic for inhibition of calcium/calmodulin-dependent (2B type) protein phosphatases. Furthermore, the dephosphorylation of hsp25 in the cell-free system derived from Ehrlich ascites tumor could be increased specifically by addition of the calcium/calmodulin-dependent (2B type) protein phosphatase calcineurin. Dephosphorylation of the heat shock protein hsp25 is also obtained in an in vitro system containing phosphorylated recombinant hsp25, 1 mM Ca2+, calmodulin, and calcineurin specifying hsp25 as the direct substrate for this enzyme. The expression of two isoforms of the catalytic subunit of the mouse calcium/calmodulin-dependent (2B type) protein phosphatases in Ehrlich ascites tumor cells is demonstrated by polymerase chain reaction using specific oligonucleotide primers to the catalytic and calmodulin-binding domain, respectively. Northern blot analysis using the amplified fragments as probes shows that the mRNA of one isoform of the mouse calcium/calmodulin-dependent protein phosphatase is of medium abundance in EAT cells. These data suggest a calcium/calmodulin-dependent dephosphorylation of the small stress protein in EAT cells also in vivo. Since it is known that heat shock increases the intracellular calcium level and that thermotolerance is influenced by calcium chelators, ionophores, and anti-calmodulin drugs, the changes in the degree of hsp25 phosphorylation induced by thermal stress resulting in an altered thermoresistance could be explained at least partially by the calcium/calmodulin-dependent dephosphorylation through protein phosphatases 2B.  相似文献   

14.
Eukaryotic small heat shock proteins (shps) act as molecular chaperones by binding to denaturing proteins, preventing their heat-induced aggregation and maintaining their solubility until they can be refolded back to their normal state by other chaperones. In this study we report on the functional characterization of a developmentally regulated shsp, hsp30, from the American bullfrog, Rana catesbeiana. An expression vector containing the open reading frame of the hsp30 gene was expressed in Escherichia coli. Purified recombinant hsp30 was recovered as multimeric complexes and was composed of a mixture of alpha-helical and beta-sheet-like structures as determined by circular dichroism analysis. Hsp30 displayed chaperone activity since it inhibited heat-induced aggregation of citrate synthase. Furthermore hsp30 maintained heat-treated luciferase in a folding competent state. For example, heat denatured luciferase when microinjected into Xenopus oocytes did not regain enzyme activity whereas luciferase heat denatured with hsp30 regained 100% enzyme activity. Finally, hsp30 protected the DNA restriction endonuclease, PstI, from heat inactivation. PstI incubated alone at 42 degrees C lost its enzymatic function after 1 h whereas PstI supplemented with hsp30 accurately digested plasmid DNA after 4 h at the elevated temperature. These results clearly indicate a molecular chaperone role for R. catesbeiana hsp30.  相似文献   

15.
MAP kinase-activated protein kinase-2 (MAPKAP kinase-2) phosphorylates the serine residues in murine heat shock protein 25 (hsp25) and human heat shock protein 27 (hsp27) which are phosphorylated in vivo in response to growth factors and heat shock, namely Ser15 and Ser86 (hsp25) and Ser15, Ser78 and Ser82 (hsp27). Ser86 of hsp25 and the equivalent residue in hsp27 (Ser82) are phosphorylated preferentially in vitro. The small heat shock protein is present in rabbit skeletal muscle and hsp25 kinase activity in skeletal muscle extracts co-purifies with MAPKAP kinase-2 activity throughout the purification of the latter enzyme. These results suggest that MAPKAP kinase-2 is the enzyme responsible for the phosphorylation of these small heat shock proteins in mammalian cells.  相似文献   

16.
An antibody highly specific for heat-shock protein (hsp)26, the unique small hsp of yeast, and mutants carrying a deletion of the HSP26 gene were used to examine the physical properties of the protein and to determine its intracellular distribution. The protein was found in complexes with a molecular mass of greater than 500 kD. Thus, it has all of the characteristics, including sequence homology and induction patterns, of small hsps from other organisms. When log-phase cells growing in glucose were heat shocked, hsp26 concentrated in nuclei and continued to concentrate in nuclei when these cells were returned to normal temperatures for recovery. However, hsp26 did not concentrate in nuclei under a variety of other conditions. For example, in early stationary-phase cells hsp26 is induced at normal growth temperatures. This protein was generally distributed throughout the cells, even after heat shock. Similarly, in cells genetically engineered to synthesize hsp26 in the presence of galactose, hsp26 did not concentrate in nuclei, with or without a heat shock. To determine if the failure of hsp26 to concentrate in the nucleus of these cells was due to the fact that the protein had been produced at 25 degrees C or to a difference in the physiological state of the cell, we investigated the distribution of the heat-induced protein in cells grown under several different conditions. In wild-type cells grown in galactose or acetate and in mitochondrial mutants grown in glucose or galactose, hsp26 also failed to concentrate in nuclei with a heat shock. We conclude that the intracellular location of hsp26 in yeast depends upon the physiological state of the cell and not simply upon the presence or absence of heat stress. Our findings may explain why previous investigations of the intracellular localization of small hsps in a variety of organisms have yielded seemingly contradictory results.  相似文献   

17.
18.
19.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

20.
A rabbit reticulocyte lysate system that has been used to reconstitute functional complexes between steroid receptors and the 90-kDa heat shock protein (hsp90) has been used here to form complexes between the pp60src tyrosine kinase and hsp90. Reticulocyte lysate forms complexes between hsp90 and a temperature-sensitive mutant of Rous sarcoma virus pp60v-src, which is normally present in cytosol virtually entirely in the multiprotein complex form. In addition, hsp90 in the lysate complexes with wild-type pp60v-src, of which only a small portion is normally recovered in cytosol in the native multiprotein complex, and with the cellular homolog, pp60c-src, which has never been recovered in cytosol in the form of a native multiprotein complex with hsp90. Moreover, the reticulocyte lysate-reconstituted complex also contains the 50-kDa phosphoprotein component of the native pp60v-src multiprotein complex. The native and reconstituted pp60src-hsp90 complexes have similar thermal stability and, like steroid receptor heterocomplexes, they are stabilized by molybdate. As previously shown with reticulocyte lysate-reconstituted steroid receptor heteroprotein complexes, the reconstituted pp60src multiprotein complex contains hsp70, which is a major candidate for providing the protein unfoldase activity required for hsp90 association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号