首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dark-field microscopy was used to determine the number of Borrelia spirochetes in 630 standard preparations obtained from adult ixodid ticks (344 Ixodes persulcatus and 286 I. ricinus) collected in 1989-92 in the Leningrad region of Russia. The average numbers of Borrelia in I. persulcatus and I. ricinus preparations were 34.7 and 23.3 per 100 microscopic fields, respectively. The maximal individual values registered each year for ticks of both species were several hundred times greater than the minimal values. Ticks carrying relatively small numbers of Borrelia generally predominated. Proportions of more heavily infected ticks varied considerably from year to year. These parameters were significantly higher in foci with predominance of I. persulcatus ticks. As a consequence, risk to acquire Lyme borreliosis in such foci is considered greater than in foci where I. ricinus predominates.  相似文献   

2.
The distributional area of the tick Ixodes ricinus (L.), the primary European vector to humans of Lyme borreliosis spirochaetes (Borrelia burgdorferi sensu lato) and tick‐borne encephalitis virus, appears to be increasing in Sweden. It is therefore important to determine which environmental factors are most useful to assess risk of human exposure to this tick and its associated pathogens. The geographical distribution of I. ricinus in Sweden was analysed with respect to vegetation zones and climate. The northern limit of I. ricinus and B. burgdorferi s.l. in Sweden corresponds roughly to the northern limit of the southern boreal vegetation zone, and is characterized climatically by snow cover for a mean duration of 150 days and a vegetation period averaging 170 days. The zoogeographical distribution of I. ricinus in Sweden can be classified as southerly–central, with the centre of the distribution south of the Limes Norrlandicus. Ixodes ricinus nymphs from 13 localities in different parts of Sweden were examined for the presence of B. burgdorferi s.l. and found to be infected with Borrelia afzelii and Borrelia garinii. Tick sampling localities were characterized on the basis of the density of Borrelia‐infected I. ricinus nymphs, presence of specific mammals, dominant vegetation and climate. Densities of I. ricinus nymphs and Borrelia‐infected nymphs were significantly correlated, and nymphal density can thus serve as a general indicator of risk for exposure to Lyme borreliosis spirochaetes. Analysis of data from this and other studies suggests that high densities of Borrelia‐infected nymphs typically occur in coastal, broadleaf vegetation and in mixed deciduous/spruce vegetation in southern Sweden. Ixodes ricinus populations consistently infected with B. burgdorferi s.l. can occur in: (a) biotopes with shrews, rodents, hares and birds; (b) biotopes with shrews, rodents, hares, deer and birds, and (c) island locations where the varying hare (Lepus timidus) is the only mammalian tick host.  相似文献   

3.
Data collected from a longitudinal survey carried out over 2 years on four farms in western France were used to assess the incidence and infestation of Ixodes ricinus on rodents. Once a month, on each farm, 25 Sherman live traps were set in hedges bordering selected pastures. A total of 799 micromammals were examined, including Apodemus sylvaticus, Clethrionomys glareolus, Microtus agrestis, Microtus arvalis, and Crocidura spp. Larvae and nymphs of I. ricinus were found. Small numbers of Ixodes (Exopalpiger) trianguliceps were also recovered from each farm. The mean infestation rate of the I. ricinus larvae (1.6–5.9) among all animals examined varied between farms Most animals were infested by only a single tick, but one M. agrestis harboured 43 I. ricinus larvae. Larvae or nymphs were found throughout the year, with peaks from March to October.  相似文献   

4.
The prevalence of Borrelia burgdorferi sensu lato in several tick species was studied over a 2 year period in two ecologically different areas in Spain. One area was an endemic area for Lyme disease, with a number of autochthonous human cases and supported large populations of Ixodes ricinus on cattle and birds; the second area was characterized by the absence of I. ricinus together with the presence of foxes and their associated tick species. While I. ricinus was the main vector of B. burgdoreri in the endemic area (with a mean prevalence of 14% in adults and 51% in nymphs), adults of both Ixodes canisuga and Ixodes hexagonus had high rates of B. burgdorferi prevalence (30 and 28%, respectively) in the zone where I. ricinus was absent. Immatures of Ixodes frontalis were found to be carriers of the spirochete only in those zones where I. ricinus is present, suggesting evidence for reservoir competence in a tick-bird cycle.  相似文献   

5.
In Europe, Borrelia burgdorferi genospecies causing Lyme borreliosis are mainly transmitted by the tick Ixodes ricinus. Since its discovery, B. burgdorferi has been the subject of many epidemiological studies to determine its prevalence and the distribution of the different genospecies in ticks. In the current study we systematically reviewed the literature on epidemiological studies of I. ricinus ticks infected with B. burgdorferi sensu lato. A total of 1,186 abstracts in English published from 1984 to 2003 were identified by a PubMed keyword search and from the compiled article references. A multistep filter process was used to select relevant articles; 110 articles from 24 countries contained data on the rates of infection of I. ricinus with Borrelia in Europe (112,579 ticks), and 44 articles from 21 countries included species-specific analyses (3,273 positive ticks). These data were used to evaluate the overall rate of infection of I. ricinus with Borrelia genospecies, regional distributions within Europe, and changes over time, as well as the influence of different detection methods on the infection rate. While the infection rate was significantly higher in adults (18.6%) than in nymphs (10.1%), no effect of detection method, tick gender, or collection period (1986 to 1993 versus 1994 to 2002) was found. The highest rates of infection of I. ricinus were found in countries in central Europe. B. afzelii and B. garinii are the most common Borrelia species, but the distribution of genospecies seems to vary in different regions in Europe. The most frequent coinfection by Borrelia species was found for B. garinii and B. valaisiana.  相似文献   

6.
The human risk of contracting Lyme disease or other tick borne diseases transmitted by the tick species Ixodes ricinus is broadly linked to the tick nymph density. The study was performed in Rambouillet forest (Yvelines, France), a known focus of Lyme borreliosis, from January 1997 to December 1999. We used a nymph sampling methodology which permitted us to obtain a monthly nymph density index (from 0 to 5). Studying the seasonal nymph and larval activity patterns and estimating the larval developmental duration, we demonstrate the existence of an annual nymphal stock. Secondly, we elucidate how this stock is distributed throughout the year, month by month. Its distribution is principally dependent on two factors: the monthly mean ambient temperature and the proportion of active nymphs which find a host each month. Expected monthly nymph densities derived from a theoretical model describing the temperature-dependent stock distribution gave a good fit to the observed densities, accounting for between 76–86% of the monthly variation in observed nymph densities. Predicting the temporal distribution of nymph activity within a stable Lyme borreliosis focus enables more precise identification of risk periods.  相似文献   

7.
Ixodes ricinus, comprising the predominant tick species in Europe, can transmit important human pathogens, including Borreliella spp., the causal agent of Lyme borreliosis. One hundred and seventy five roe deer hunted in two areas (plateau and mountain) of Galicia (northwest Spain) were examined for the presence of ticks; all roe deer were infested by I. ricinus. Nymphs (n = 1000), males (n = 1449) and females (n = 1000) of I. ricinus were analysed in pools of up to 10 ticks to detect both Borreliella and Borrelia DNA. The average number of I. ricinus per roe deer was similar in both areas, regardless of the life stage; although the percentage of Borreliella and Borrelia positive pools was higher in ticks collected from roe deer hunted in the plateau area, no significant differences were detected. Sequence analysis at the flagellin gene allowed the identification of four Borreliella species (Borreliella afzelii, Borreliella garinii, Borreliella lusitaniae and Borreliella valaisiana) and Borrelia miyamotoi in adult males; only B. valaisiana and B. miyamotoi were detected in nymphs and all females were negative. All Borreliella and Borrelia species found in roe deer were previously identified in questing I. ricinus collected in the same study area, although the prevalence was lower in the present study. The analysis of male I. ricinus ticks collected from roe deer gives a good estimation of Borreliella diversity in questing ticks.  相似文献   

8.
A 2‐year study was conducted in a mountainous area of northeast Italy to evaluate the occurrence and distribution of ticks, as well as to assess the prevalence of the spirochaete Borrelia burgdorferi sensu lato. All ticks collected were Ixodes ricinus L. (Parasitiformes: Ixodidae). In general, most nymphs and adult ticks were collected from April to July. Tick density was highly variable among sites; however, two areas with different infestation levels were recognized. Prevalences of B. burgdorferi s.l. in nymphal stages were rather variable between sites; overall the prevalence of infected nymphs in the whole area was slightly higher than 20%. The prevalence of B. burgdorferi s.l. in nymphs does not seem to be correlated with nymph density. The correlation between the incidence of Lyme borreliosis (reported human cases/1000 inhabitants/year) and Borrelia prevalence in nymphs was not significant, although a significant correlation was found between borreliosis incidence and nymph density.  相似文献   

9.
10.
We report the sequential developmental events of Borrelia burgdorferi in histological sections of Ixodes ricinus nymphs before, during and after feeding. During the blood meal a decrease of approximately 50% in the number of infected ticks was recorded (eight out of 76, 11%) in comparison with the infection rate of unfed ticks (12 out of 56, 21%). Spirochetes were detected in tick salivary glands only after 2 days of attachment. From day 3 until drop-off, the number of infected ticks increased to 31% (15 out of 49). A quadratic logistic regression analysis showed that the variation in the number of infected ticks was significant, but only during the blood meal. The drop in the percentage of infected ticks during the first hours following attachment to the host is explained by our observation of spirochetes in the faeces of the ticks. The increase in the infection rate of replete ticks may be due to an uptake of spirochetes from the host skin at the feeding site.  相似文献   

11.
Between 1988 and 1993, a total of 7173 I. ricinus ticks, predominantly nymphs, were collected from the vegetation on the Dutch North Sea Island of Ameland. A proportion of the ticks (n=547) was screened for the presence of Borrelia by immunofluorescence. Infection rates of Borrelia varied, in nymphs (n=347) from 13% to 46% and in adults, (n=122) from 20% to 43%. The infection rate in larvae (n=84) collected in 1993 was 21%, showing that transovarial transmission of B. burgdorferi occurs in the I. ricinus population on Ameland. Two tick-naive sheep seroconverted for B. burgdorferi after field-collected adult or nymphal I. ricinus were allowed to feed on them. Larval progeny (n=168) of 15 female adult ticks fed on one of these sheep were free from B. burgdorferi. B. burgdorferi was isolated in culture from field-collected adult ticks. Serotyping using monoclonal antibodies against outer surface proteins A and C indicated that both isolates belonged to genospecies B. garinii, and this was confirmed by DraI restriction analysis of the variable DNA sequence between the 5S and 23S rRNA genes.  相似文献   

12.
Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three‐year, bird‐tick‐pathogen study (2004–2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada‐wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf‐rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete‐infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first‐time records for: ticks in the Yukon (north of 60° latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird‐derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden‐crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir‐competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.‐infected ticks into Canada. Bird‐feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range.  相似文献   

13.
The castor bean tick, Ixodes ricinus (L.) (Ixodida: Ixodidae), is the principal vector of pathogens causing tick-borne encephalitis or Lyme borreliosis in Europe. It is therefore of general interest to make an estimate of the density of I. ricinus for the whole year at the beginning of the tick season. There are two necessary conditions for making a successful prediction: a long homogeneous time series of observed tick density and a clear biological relationship between environmental predictors and tick density. A 9-year time series covering the period 2009–2017 of nymphal I. ricinus flagged at monthly intervals in southern Germany has been used. With the hypothesis that I. ricinus density is triggered by the fructification of the European beech 2 years before, the mean annual temperature of the previous year, and the current mean winter temperature (December–February), a forecast of the annual nymphal tick density has been made. Therefore, a Poisson regression model was generated resulting in an explained variance of 93.4% and an error of \(\hbox {RMSE} = 21\) ticks per \(100\,\hbox {m}^2\) (annual \(\hbox {MEAN} = 260\) collected ticks/\(100\,\hbox {m}^2\)). An independent verification of the forecast for the year 2017 resulted in 187 predicted versus 180 observed nymphs per \(100\,\hbox {m}^2\). For the year 2018 a relatively high number of 443 questing I. ricinus nymphs per \(100\,\hbox {m}^2\) is forecasted, i.e., a “good” tick year.  相似文献   

14.
The efficiency with which the spirochaete Borrelia burgdorferi sensu stricto was transmitted from laboratory mice to larval and nymphal Ixodes ricinus ticks was assessed, using the polymerase chain reaction. The transmission efficiency to nymphs was significantly greater than to larvae when both fed together on the same host. Increased tick infestation levels of mice were correlated with significantly greater engorgement weights and higher B. burgdorferi transmission coefficients from mice to nymphs. These observations indicate that both the feeding success of ticks and the transmission coefficients from host to tick may be influenced by the tick infestation level of an infected host. The infestation level and the relative numbers of each life stage of the tick are factors which should be considered in the design of transmission experiments.  相似文献   

15.

Ixodes ricinus ticks transmit Borrelia burgdorferi sensu lato (s.l.) as well as Borrelia miyamotoi. Larvae become infected when feeding on infected rodents, with horizontal transmission of B. burgdorferi and horizontal and vertical transmission of B. miyamotoi. We studied seasonal dynamics of infection rates of I. ricinus and their rodent hosts, and hence transmission risk of these two distinctly different Borrelia species. Rodents were live-trapped and inspected for ticks from May to November in 2013 and 2014 in a forest in The Netherlands. Trapped rodents were temporarily housed in the laboratory and detached ticks were collected. Borrelia infections were determined from the trapped rodents and collected ticks. Borrelia burgdorferi s.l. and B. miyamotoi were found in ticks as well as in rodents. Rodent density was higher in 2014, whereas tick burden as well as the Borrelia infection rates in rodents were higher in 2013. The density of B. miyamotoi-infected nymphs did not differ between the years. Tick burdens were higher on Apodemus sylvaticus than on Myodes glareolus, and higher on males than on females. Borrelia-infection rate of rodents varied strongly seasonally, peaking in summer. As the larval tick burden also peaked in summer, the generation of infected nymphs was highest in summer. We conclude that the heterogeneity of environmental and host-specific factors affects the seasonal transmission of Borrelia spp., and that these effects act more strongly on horizontally transmitted B. burgdorferi spp. than on the vertically transmitted B. miyamotoi.

  相似文献   

16.
To determine whether some of the B. burgdorferi sensu lato genospecies associate with fat dormouse as a reservoir host, we investigated the prevalence of infection in questing animals. A total of 45 adult fat dormice (30 female and 15 male) were captured by hunters during their hunting season in the region of Gorski Kotar, Croatia. Dead animals were aseptically dissected, and the urinary bladder tissue was used for isolation attempt and for deoxyribonucleic acid (DNA) extraction. Out of 45 DNA samples extracted from urine bladder tissue, we found four (8.88%) to be polymerase chain reaction (PCR) positive. The RFLP analysis of the PCR product after cleavage with DraI and MseI distinguished between the three major genospecies: B. burgdorferi sensu stricto, B. garinii and B. afzelii. All positive samples were typed as B. afzelii with a unique DraI or MseI pattern. The results of the analysis of urinary bladder tissue samples culture for the presence of Borrelia were negative. Results showed that a prevalence of the Borrelia infection among population of fat dormice indicated their epizootiological involvement as a reservoir of Borrelia spirochetes. Furthermore, this work is an initial step in the investigation of the molecular epidemiology/epizootiology of Lyme borreliosis in Croatia.  相似文献   

17.
A hedgehog, Erinaceus europaeus, was found to be heavily infested with larval and nymphal Ixodes ricinus in a forest park in Co. Galway, Ireland. A large proportion of the ticks that engorged and detached were infected with the spirochacte, Borrelia burgdorferi, the causative agent of human Lyme borreliosis. The identity of these spirochaetes was confirmed by immunofluorescent assay with B. burgdorferi-specific monoclonal antibody and by polymerase chain reaction test and they were transmitted from the hedgehog to laboratory-reared ticks and from the ticks obtained from the hedgehog to gerbils (Meriones unguiculatus). The high infection rate of the larvae that fed on the hedgehog in comparison with unfed larvae from the same habitat was interpreted as strong evidence that this host species is reservoir competent. Since hedgehogs can evidently feed adult ticks as well as many immature stages, they may well have an important role in the ecology of Lyme borreliosis in some habitats.  相似文献   

18.
The objective of this study was to demonstrate the occurrence of entomopathogenic fungi on Ixodes ricinus ticks in relation to the tick stage, engorgement and season. Ticks were collected from the vegetation, from small rodents and from deer. All entomopathogenic fungi found belonged to the Hyphomycetes. Paecilomyces farinosus and Verticillium lecanii were the predominant species. Other species, found only on engorged females were: Beauveria bassiana, B. brongniartii, P. fumosoroseus and V. aranearum. Eight out of 1833 ticks collected from the vegetation and three out of 269 engorged nymphs were infected with fungi. Thirty-three out of 149 engorged females were infected, whereas males and engorged larvae were not infected. Throughout the season, a significantly higher proportion of ticks collected in autumn were infected. Entomopathogenic fungi may have a significant impact on the size of the I. ricinus population, since females were the most frequently infected stage.  相似文献   

19.
Lyme disease (also called borreliosis) is a prevalent chronic disease transmitted by ticks and caused by Borrelia burgdorferi s. l. spirochete. At least one tick protein, namely TROSPA from I. scapularis, commonly occurring in the USA, was shown to be required for colonization of the vector by bacteria. Located in the tick gut, TROSPA interacts with the spirochete outer surface protein A (OspA) and initiates the tick colonization. Ixodes ricinus is a primary vector involved in B. burgdorferi s. l. transmission in most European countries. In this study, we characterized the capacities of recombinant TROSPA protein from I. ricinus to interact with OspA from different Borrelia species and to induce an immune response in animals. We also showed that the N-terminal part of TROSPA (a putative transmembrane domain) is not involved in the interaction with OspA and that reduction of the total negative charge on the TROSPA protein impaired TROSPA-OspA binding. In general, the data presented in this paper indicate that recombinant TROSPA protein retains the capacity to form a complex with OspA and induces a significant level of IgG in orally immunized rats. Thus, I. ricinus TROSPA may be considered a good candidate component for an animal vaccine against Borrelia.  相似文献   

20.
The incidence of Lyme borreliosis (LB) in a region may reflect the prevalence of Borrelia in the tick population. Our aim was to investigate if regions with different LB incidences can be distinguished by studying the prevalence and diversity of Borrelia species in their respective tick populations. The Borrelia load in a feeding tick increases with the duration of feeding, which may facilitate a transmission of Borrelia Spirochetes from tick to host. Therefore, we also wanted to investigate how the Borrelia load in ticks that have fed on humans varies with the duration of tick feeding. During 2008 and 2009, ticks that had bitten humans were collected from four regions of Sweden and Finland, regions with expected differences in LB incidence. The duration of tick feeding was estimated and Borrelia were detected and quantified by a quantitative PCR assay followed by species determination. Out of the 2,154 Ixodes ricinus ticks analyzed, 26% were infected with Borrelia and seven species were identified. B. spielmanii was detected for the first time in the regions. The tick populations collected from the four regions exhibited only minor differences in both prevalence and diversity of Borrelia species, indicating that these variables alone cannot explain the regions’ different LB incidences. The number of Borrelia cells in the infected ticks ranged from fewer than ten to more than a million. We also found a lower number of Borrelia cells in adult female ticks that had fed for more than 36 hours, compared to the number of Borrelia cells found in adult female ticks that had fed for less than 36 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号