首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have recently cloned a cDNA encoding mitochondrial porin in Drosophila melanogaster and shown its chromosomal localization (Messina et al., FEBS Lett. (1996) 384, 9–13). Such cDNA was used as a probe for screening a genomic library. We thus cloned and sequenced a 4494-bp genomic region which contained the whole gene for the mitochondrial porin or VDAC. It was found that this D. melanogaster porin gene contains five exons, numbered IA (115 bp), IB (123 bp), II (320 bp), III (228 bp) and IV (752 bp). The exons II, III and IV contain the protein coding sequence and the 3′ untranslated sequence (3′-UTR). The first base in exon II precisely corresponds to the first base of the starting ATG codon. Exon IA corresponds to the 5′-UTR sequence reported in the published cDNA sequence. Exon IB corresponds to an alternative 5′-UTR sequence, demonstrated to be transcribed by 5′-RACE experiments. The exon-intron splicing borders and the length of the exon III perfectly match a homologous internal exon detected in the mouse genes. Such exon encodes a protein domain predicted by sequence transmembrane arrangement models to contain major hydrophilic loops and it is thus suspected to have a conserved distinct function. In situ hybridization experiments confirmed the localization of the genomic clone on the chromosome 2L at region 32B3-4. Together with genomic Southern blotting at various stringencies, the same experiment did not confirm the presence of a second genetic locus on D. melanogaster chromosomes. Northern blots demonstrated that the porin gene is a housekeeping one: three messages of approx. 1.2–1.6 kbp are transcribed in every fly developmental stage that was studied. They were shown to derive by an alternative usage of different promoters and polyadenylation sites.  相似文献   

4.
Molecular phylogenies based on the molecular clock require the comparison of orthologous genes. Orthologous and paralogous genes usually have very different evolutionary fates. In general, orthologs keep the same functions in species, whereas, particularly over a long time span, paralogs diverge functionally and may become pseudogenes or get lost. In eukaryotic genomes, because of the degree of redundancy of genetic information, homologous genes are grouped in gene families, the evolution of which may differ greatly between the various organisms. This implies that each gene in a species does not always have an ortholog in another species and thus, due to multiple duplication events following a speciation, many orthologous clades of paralogs are generated. We are often dealing with a one-to-many or many-to-many relationship between genes. In this paper, we analyze the evolution of two gene families, the p53 gene family and the porin gene family. The evolution of the p53 family shows a one-to-many gene relationship going from invertebrates to vertebrates. In invertebrates only a single gene has been found, while in vertebrates three members of the family, namely p53, p63, and p73, are present. The evolution of porin (VDAC) genes (VDAC1, VDAC2, and VDAC3) is an example of a many-to-many gene relationship going from yeast to mammals. However, the porin gene redundancy found in invertebrates and possibly in some fishes may indicate a tendency to duplicate the genetic material, rather than a real need for function innovation.  相似文献   

5.
Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis.  相似文献   

6.
7.
The protein called voltage-dependent anion-selective channel (VDAC), or mitochondrial porin, forms channels that provide the major pathway for small metabolites across the mitochondrial outer membrane. We have identified and sequenced agporin, a gene of the malaria vector mosquito Anopheles gambiae that conceptually encodes a protein with 73% identity to the VDAC protein encoded by the porin gene in Drosophila melanogaster. By in situ hybridization, we have localized agporin at region 35D on the right arm of A. gambiae chromosome 3, which is homologous to the 2L chromosomal arm of D. melanogaster where the porin gene resides. The comparison of agporin with its putative Drosophila counterpart revealed that both the nucleotide sequence and the structural organization of the two genes are strikingly conserved even though the ancestral lines of A. gambiae and D. melanogaster are thought to have diverged about 250 million years ago. Our results suggest that, while in yeast, plants, and mammals, VDAC isoforms are encoded by small multigene families and are able to compensate for each other at least partially, in A. gambiae a single gene encodes the VDAC protein.  相似文献   

8.
Site-selected transposon mutagenesis at the hcf106 locus in maize.   总被引:6,自引:1,他引:5       下载免费PDF全文
The High chlorophyll fluorescence106 (Hcf106) gene in maize is required for chloroplast membrane biogenesis, and the hcf106-mum1 allele is caused by the insertion of a Robertson's Mutator Mu1 element into the promoter of the gene. Seedlings homozygous for hcf106-mum1 are pale green and die 3 weeks after germination, but only in the presence of Mutator activity conferred by active, autonomous Mu regulatory transposons elsewhere in the genome. When Mutator activity is lost, the mutant phenotype is suppressed, and homozygous plants have an almost wild-type phenotype. To isolate derivative alleles at the hcf106 locus that no longer require Mutator activity for phenotypic expression, we have developed a method for site-selected transposon mutagenesis in maize. This procedure, first described for Caenorhabditis elegans and Drosophila, involves using polymerase chain reaction (PCR) to screen pools of individuals for insertions and deletions in genes of known sequence. Pools of seedlings segregating for the progenitor allele hcf106-mum1 were screened by PCR for insertions and deletions associated with Robertson's Mutator. In a 360-bp target region, two new insertions and one deletion were identified in only 700 Mu-active gametes screened. One of the insertions was in the progenitor hcf106-mum1 allele and the other was in the wild-type allele, but all three new alleles were found to have break-points at the same nucleotide in the first intron. Unlike the hcf-106-mum1 progenitor allele, the deletion and one of the insertions conferred pale green seedling lethal phenotypes in the absence of mutator activity. However, the second insertion had a weak, viable phenotype under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Silflow CD  Sun X  Haas NA  Foley JW  Lefebvre PA 《Genetics》2011,189(4):1249-1260
Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.  相似文献   

10.
A simple and general method for disrupting chromosomal genes and introducing insertions is described. This procedure involves eliminating wild-type bacterial genes and introducing mutant alleles or other insertions at the original locus of the wild-type gene. To demonstrate the utility of this approach, the tig gene of Escherichia coli was replaced by homologous recombination with a cassette containing the chloramphenicol resistance gene and the sacB gene. The cassette was then removed and the tig mutant alleles were moved into the native tig location. Sequencing and Western blotting results demonstrated that insertions or deletions can be introduced precisely in E. coli using our approach. Our system does not require extra in vitro manipulations such as restriction digestion or ligation, and does not require use of specific plasmids or strains which are used to prevent false positive transformants caused by template plasmid transformation. This technique can be used widely in bacterial genome analysis.  相似文献   

11.
The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel.  相似文献   

12.
The ATM (A-T, mutated) gene on human chromosome 11q22.3 has recently been identified as the gene responsible for the human recessive disease ataxia-telangiectasia (A-T). In order to define the types of disease-causing ATM mutations in Japanese A-T patients as well as to look for possible mutational hotspots, reverse-transcribed RNA derived from ten patients belonging to eight unrelated Japanese A-T families was analyzed for mutations by the restriction endonuclease fingerprinting method. As has been reported by others, mutations that lead to exon skipping or premature protein truncation were also predominant in our mutants. Six different mutations were identified on 12 of the 16 alleles examined. Four were deletions involving a loss of a single exon: exon 7, exon 16, exon 33 or exon 35. The others were minute deletions, 4649delA in exon 33 and 7883del5 in exon 55. The mutations 4612del165 and 7883del5 were found in more than two unrelated families; 44% (7 of 16) of the mutant alleles had one of the two mutations. The 4612del165 mutations in three different families were all ascribed to the same T→A substitution at the splice donor site in intron 33. Microsatellite genotyping around the ATM locus also indicated that a common haplotype was shared by the mutant alleles in both mutations. This suggests that these two founder mutations may be predominant among Japanese ATM mutant alleles. Received: 15 September 1997 / Accepted: 12 January 1998  相似文献   

13.
John C. Fiddes  G.Nigel Godson 《Cell》1978,15(3):1045-1053
A 290 nucleotide long region of the bacteriophage G4 genome including the end of the overlapping genes D and E, the entire gene J and the untranslated region between genes J and F has been sequenced and compared with the same region in bacteriophage φX174. Deletions, insertions, duplications and single base changes in G4 relative to φX174 have resulted in the following changes: the loss of the φX174 overlapping gene D termination and gene J initiation codons, resulting in their separation by 32 untranslated nucleotides; the deletion of one third of the gene J coding region, so that the G4 J protein is only 24 amino acids long compared with 37 amino acids in φX174; and the establishment of a longer untranslated region between G4 genes J and F, which despite many nucleotide changes retains the ability to form a stable hairpin loop in the same place and with the same geometry as in φX174. The G4 overlapping gene E is longer than in φX174 and extends beyond gene D. Sixteen nucleotides at the end of genes D and E in φX174 are duplicated in G4 before gene J.  相似文献   

14.
The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation.  相似文献   

15.
In Paramecium tetraurelia, stock 51, the A surface protein is coded by the wild type A51 gene, present in micronuclei in two copies and in macronuclei in about 1500 copies. DNA processing, comprised of DNA cleavage, copy number amplification and telomere addition occurs at autogamy and conjugation when old macronuclei degrade and new macronuclei are formed from micronuclei. In this paper we characterize mutants with macronuclear A gene deletions. These mutants are notable in three respects. First, the mutants do not appear to be simple micronuclear deletions. Although genetic analysis shows that the d12 mutant d12(-1300) is homozygous for the allele A-1300 and the mutant d12(+1) for A+1, analysis by the polymerase chain reaction indicates that the micronuclei in these two mutants contain intact, but presumably altered, micronuclear A genes. They undergo deletion during DNA processing when new macronuclei are formed. Second, the position of the deletions in these alleles has been shown to change. The deficiency present in the d12 allele A-1300 was originally determined to extend from position -1300 (relative to the start of translation of the A gene) to the end of the chromosome. Later, a derivative of this strain, homozygous for the d12 allele A+1 was isolated in which the start site of the deletion was found to have moved from -1300 to +1. Third, a surprising interaction occurs in crosses between a line homozygous for the d12 allele and one homozygous for the wild-type A51 allele. Previous work on the non-Mendelian d48 mutant (which has intact A51 genes in its micronucleus, but has truncated A51 genes in its macronucleus) has shown that intact A51 alleles must be present in the old macronucleus in order for A51 alleles to undergo proper processing. We find that d12 alleles act on A51 alleles in heterozygotes such that intact macronuclear A genes are no longer required for proper processing of A51. Thus, in crosses of 51 x d12 (either +1 or -1300) d12 exconjugants, as well as 51 exconjugants, give rise to clones carrying both intact A51 and truncated d12 alleles. Remarkably the d12 alleles, which are themselves deleted during processing, are capable in the heterozygote of fostering normal processing of the A51 allele.  相似文献   

16.
K. Weston-Hafer  D. E. Berg 《Genetics》1991,127(4):649-655
We test here whether a class of deletions likely to result from errors during DNA replication arise preferentially during synthesis of either the leading or the lagging DNA strand. Deletions were obtained by reversion of particular insertion mutant alleles of the pBR322 amp gene. The alleles contain insertions of palindromic DNAs bracketed by 9-bp direct repeats of amp sequence; in addition, bp 2 to 5 in one arm of the palindrome form a direct repeat with 4 bp of adjoining amp sequence. Prior work had shown that reversion to Ampr results from deletions with endpoints in the 8- or 4-bp repeat, and that the 4-bp repeats are used preferentially because one of them is in the palindrome. To test the role of leading and lagging strand synthesis in deletion formation, we reversed the direction of replication of the amp gene by inverting the pBR322 replication origin, and also constructed new mutant alleles with a 4-bp repeat starting counterclockwise rather than clockwise of the insertion. In both cases the 4-bp repeats were used preferentially as deletion endpoints. A model is presented in which deletions arise during elongation of the strand that copies the palindrome before the adjoining 4-bp repeat, and in which preferential use of the 4-bp repeats independent of the overall direction of replication implies that deletions arise during syntheses of both leading and lagging strands.  相似文献   

17.
The voltage-dependent anion channel (VDAC), a major outer mitochondrial membrane protein, is thought to play an important role in energy production and apoptotic cell death in mammalian systems. However, the function of VDACs in plants is largely unknown. In order to determine the individual function of plant VDACs, molecular and genetic analysis was performed on four VDAC genes, VDAC1-VDAC4, found in Arabidopsis thaliana. VDAC1 and VDAC3 possess the eukaryotic mitochondrial porin signature (MPS) in their C-termini, while VDAC2 and VDAC4 do not. Localization analysis of VDAC-green fluorescent protein (GFP) fusions and their chimeric or mutated derivatives revealed that the MPS sequence is important for mitochondrial localization. Through the functional analysis of vdac knockout mutants due to T-DNA insertion, VDAC2 and VDAC4 which are expressed in the whole plant body are important for various physiological functions such as leaf development, the steady state of the mitochondrial membrane potential, and pollen development. Moreover, it was demonstrated that VDAC1 is not only necessary for normal growth but also important for disease resistance through regulation of hydrogen peroxide generation.  相似文献   

18.
The outer mitochondrial membrane receptor for hexokinase binding has been identified as the VDAC protein, also known as mitochondrial porin. The ability of the receptor to bind hexokinase is inhibited by pretreatment with dicyclohexylcarbodiimide (DCCD). At low concentrations, DCCD inhibits hexokinase binding by covalently labeling the VDAC protein, with no apparent effect on VDAC channel-forming activity. The stoichiometry of [14C]-DCCD labeling is consistent with one to two high-affinity DCCD-binding sites per VDAC monomer. A comparison between the sequence of yeast VDAC and a conserved sequence found at DCCD-binding sites of several membrane proteins showed two sites where the yeast VDAC amino acid sequence appears to be very similar to the conserved DCCD-binding sequence. Both of these sites are located near the C-terminal end of yeast VDAC (residues 257–265 and 275–283). These results are consistent with a model in which the C-terminal end of VDAC is involved in binding to the N-terminal end of hexokinase.  相似文献   

19.
Bordetella pertussis produces a porin protein which is a prominent outer membrane component found in both virulent and avirulent strains. N-terminal amino acid analysis of purified B. pertussis porin was performed and this amino acid sequence was used to design an oligonucleotide that was then utilized to screen a lambda gt11 library containing randomly sheared fragments of DNA from B. pertussis strain 347. One clone, lambda BpPor, was identified and subcloned into pUC18. A portion of the DNA insert in this subclone, pBpPor1, was sequenced and shown to contain the N-terminal region of the structural porin gene. This truncated gene sequence was used to design an additional oligonucleotide that was used to identify a clone, pBpPor2, which overlapped with pBpPor1 and contained a termination codon. The structural gene deduced from this sequence would encode a 365-amino-acid polypeptide with a predicted mass of 39,103 daltons. The predicted product also contains a signal sequence of 20 residues that is similar to that found in other porin genes. The predicted B. pertussis porin protein sequence contains regions that are homologous to regions found in porins expressed by Neisseria species and Escherichia coli, including the presence of phenylalanine as the carboxy-terminal amino acid. DNA hybridization studies indicated that both virulent and avirulent strains of B. pertussis contain only one copy of this gene and that Bordetella bronchiseptica and Bordetella parapertussis contain a similar gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号