首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photophysics of tryptophan in bacteriophage T4 lysozymes   总被引:7,自引:0,他引:7  
D L Harris  B S Hudson 《Biochemistry》1990,29(22):5276-5285
Bacteriophage T4 lysozyme contains three tryptophan residues in distinct environments. Lysozymes with one or two of these residues replaced by tyrosine are used to characterize the photophysics of tryptophan in these individual sites. The fluorescence spectra, average lifetimes, and quantum yields of these three single-tryptophan variants are understandable in terms of the neighboring residues. The emission spectra and radiative lifetimes are found to be the same for all three species while the quantum yield and decay kinetics are quite distinct. The variation of the average nonradiative rate constant is correlated with neighboring quenching groups. Quenching by I- correlates with exposure of the tryptophan residue based on the crystal structure. Complex behavior is observed for the time dependence of the fluorescence decay in all three cases, including that of the immobile tryptophan-138 residue. The complexity of the fluorescence decay is ascribed to heterogeneity in the nonradiative rate constant among microstates. Energy transfer between tryptophan residues is inferred to occur from comparison of the quantum yields of the two-tryptophan and single-tryptophan proteins and is discussed in terms of the F?rster mechanism.  相似文献   

2.
The calcium-binding protein isolated from the sarcoplasm of the muscles of the sand worm Nereis diversicolor has four EF-hands and three active binding sites for Ca(2+) or Mg(2+). Nereis diversicolor sarcoplasmic calcium-binding protein contains three tryptophan residues at positions 4, 57, and 170, respectively. The Wt protein shows a very limited fluorescence increase upon binding of Ca(2+) or Mg(2+). Single-tryptophan-containing mutants were produced and purified. The fluorescence titrations of these mutants show a limited decrease of the affinity for calcium, but no alterations of the cooperativity. Upon adding calcium, Trp170 shows a strong fluorescence increase, Trp57 an extensive fluorescence decrease, and Trp4 shows no fluorescence change. Therefore mutant W4F/W170F is ideally suited to analyze the fluorescence titrations and to study the binding mechanism. Mutations of the calcium ligands at the z-position in the three binding sites show no effect at site I and a total loss of cooperativity at sites III and IV. The quenching of Trp57 upon calcium binding is dependent on the presence of arginine R25, but this residue is not just a simple dynamic quencher. The role of the salt bridge R25-D58 is also investigated.  相似文献   

3.
MARCKS-related protein (MRP) is a peripheral membrane protein whose binding to membranes is mediated by the N-terminal myristoyl moiety and a central, highly basic effector domain. MRP mediates cross-talk between protein kinase C and calmodulin and is thought to link the actin cytoskeleton to the plasma membrane. Since MRP contains no tryptophan residues, we mutated a phenylalanine in the effector domain to tryptophan (MRP F93W) and used fluorescence spectroscopy to monitor binding of the protein to phospholipid vesicles. We report in detail the evaluation procedure necessary to extract quantitative information from the raw data. The spectra of MRP F93W obtained in the presence of increasing amounts of lipid crossed at an isosbestic point, indicating a simple transition between two states: free and membrane-bound protein. The change in fluorescence toward values typical of a more hydrophobic environment was used to quantify membrane binding. The partition coefficient agreed well with values obtained previously by other methods. To study the interaction of the N-terminus of MRP with membranes, a tryptophan residue was also introduced at position 4 (MRP S4W). Our data suggest that only the myristoylated N-terminus interacted with liposomes. These results demonstrate the versatility of site-directed incorporation of tryptophan residues to study protein-membrane interactions.  相似文献   

4.
The tryptophan analog, 5-hydroxytryptophan (5HW), has a significant absorbance between 310–320 nm, which allows it to act as an exclusive fluorescence probe in protein mixtures containing a large number of tryptophan residues. Here for the first time a method is reported for the biosynthetic incorporation of 5HW into an expressed protein, the Y57W mutant of the Ca2+ binding protein, oncomodulin. Fluorescence anisotropy and time-resolved fluorescence decay measurements of the interaction between anti-oncomodulin antibodies and the 5HW-incorporated oncomodulin conveniently provide evidence of complex formation and epitope identification that could not be obtained with the natural amino acid. This report demonstrates the significant potential for the use or 5HW as an intrinsic probe in the study of structure and dynamics of protein—protein interactions.  相似文献   

5.
Abstract

The binding of drugs to serum proteins is governed by weak non-covalent forces. In this study, the nature and magnitude of the interactions between piroxicam (PRX) and bovine serum albumin (BSA) was assessed using spectroscopic, calorimetric and computational molecular methods. The fluorescence data revealed an atypical behavior during PRX and BSA interaction. The quenching process of tryptophan (Trp) by PRX is a dual one (approximately equal static and dynamic quenched components). The FRET results indicate that a non-radiative transfer of energy occurred. The association constant and the number of binding sites indicate moderate PRX and BSA binding. The competitive binding study indicates that PRX is bound to site I from the hydrophobic pocket of subdomain IIA of BSA. The synchronous spectra showed that the microenvironment around the BSA fluorophores and protein conformation do not change considerably. The Trp lifetimes revealed that PRX mainly quenches the fluorescence of Trp-213 situated in the hydrophobic domain. The CD and DSC investigation show that addition of PRX stabilizes the protein structure. ITC results revealed that BSA-PRX binding involves a combination of electrostatic, hydrophobic and hydrogen interactions. The analysis of the computational data is consistent with the experimental results. This thorough investigation of the PRX-BSA binding may provide support for other studies concerning moderate affinity drugs with serum protein.

Communicated by Ramaswamy H. Sarma  相似文献   

6.
A frequency-domain fluorescence study of calcium-binding metalloproteinase from Staphylococcus aureus has shown that this two-tryptophan-containing protein exhibits a double-exponential fluorescence decay. At 10 degrees C in 0.05 M Tris-HCl buffer (pH 9.0) containing 10 mM CaCl2, fluorescence lifetimes of 1.2 and 5.1 ns are observed. Steady-state and frequency-domain solute-quenching studies are consistent with the assignment of the two lifetimes to the two tryptophan residues. The tryptophan residue characterized by a shorter lifetime has a maximum of fluorescence emission at about 317 nm and the second one exhibits a maximum of its emission at 350 nm. These two residues contribute almost equally to the protein's fluorescence. These results, as well as fluorescence-quenching studies using KI and acrylamide as a quencher, indicate that in calcium-loaded metalloproteinase, the tryptophan residue characterized by the shorter lifetime is extensively buried within the protein. The second residue is exposed on the surface of the protein. The tryptophan residues of metalloproteinase have acrylamide dynamic-quenching rate constants, kq values, of 2.3 and 0.26 X 10(9) M-1 X s-1 for the exposed and buried residue, respectively. A study of the temperature dependence of the fluorescence lifetime for the two tryptophan components gives activation energies, Ea values, for thermal quenching of 1.8 and 2.2 kcal/mol for the buried and the exposed residue, respectively. Dissociation of Ca2+ from the protein causes a change in the protein's structure, as can be judged from dramatic changes which occur in the fluorescence properties of the buried tryptophan residue. These changes include an approx. 13 nm red-shift in the maximum of the fluorescence emission and an increase in the acrylamide-quenching rate constant, and they indicate that the removal of Ca2+ results in an increase in the exposure and the polarity of the microenvironment of this 'blue' residue.  相似文献   

7.
The fluorescence decay properties of wild-type trp repressor (TR) have been characterized by carrying out a multi-emission wavelength study of the frequency response profiles. The decay is best analyzed in terms of a single exponential decay near 0.5 ns and a distribution of lifetimes centered near 3-4 ns. By comparing the recovered decay associated spectra and lifetime values with the structure of the repressor, tentative assignments of the two decay components recovered from the analysis to the two tryptophan residues, W19 and W99, of the protein have been made. These assignments consist of linking the short, red emitting component to emission from W99 and most of the longer bluer emitting lifetime distribution to emission from W19. Next, single tryptophan mutants of the repressor in which one of each of the tryptophan residues was substituted by phenylalanine were used to confirm the preliminary assignments, inasmuch as the 0.5-ns component is clearly due to emission from tryptophan 99, and much of the decay responsible for the recovered distribution emanates from tryptophan 19. The data demonstrate, however, that the decay of the wild-type protein is not completely resolvable due both to the large number of components in the wild-type emission (at least five) as well as to the fact that three of the five lifetime components are very close in value. The fluorescence decay of the wild-type decay is well described as a combination of the components found in each of the mutants. However, whereas the linear combination analysis of the 15 data sets (5 from the wild-type and each mutant) yields a good fit for the components recovered previously for the two mutants, the amplitudes of these components in the wild-type are not recovered in the expected ratios. Because of the dominance of the blue shifted emission in the wild-type protein, it is most likely that subtle structural differences in the wild-type as compared with the mutants, rather than energy transfer from tryptophan 19 to 99, are responsible for this failure of the linear combination hypothesis.  相似文献   

8.
Conformational change in rat liver phenylalanine hydroxylase associated with activation by phenylalanine or N-(1-anilinonaphth-4-yl)maleimide was investigated by measuring fluorescence spectra and fluorescence lifetimes of tryptophanyl residues as well as the probe fluorophore conjugated with SH groups of the hydroxylase. The fluorescence spectrum of tryptophan exhibited its maximum at 342 nm. It shifted by 8 nm toward longer wavelength accompanied by an increase in its intensity, by preincubation with 1 mM phenylalanine. The fluorescence intensity of tryptophan increased by 36% upon the activation. On the other hand, the binding of (6R)-L-erythro-tetrahydrobiopterin, a natural cofactor of the enzyme, induced a decrease in the fluorescence intensity by 79% without a shift of the maximum wavelength. The fluorescence lifetime of tryptophan of phenylalanine hydroxylase exhibited two components with lifetimes of 1.7 and 4.1 ns. The values of the lifetimes changed to 1.4 and 5.6 ns, respectively, upon the activation. It is considered that the change in the longer lifetime is correlated with the shift of the emission peak upon the activation. The values of both the lifetimes decreased to 0.64 and 3.6 ns upon the binding of (6R)-L-erythro-tetrahydrobiopterin, which is coincident with the decrease in the fluorescence intensity. Conjugation of N-(1-anilinonaphth-4-yl)maleimide with SH of phenylalanine hydroxylase brought about a decrease in both the fluorescence intensity and the value of the shorter lifetime of the tryptophanyl residues, while the longer lifetime remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The interaction of riboflavin with a protein isolated from egg white has been studied spectrofluorimetrically at different pH values. In 0.1 M phosphate buffer pH 7.0; 1:1 complex formation occurs with the association constant Ka = 7.7-10(7) M-1. In the presence of 0.033% sodium dodecyl sulphate, the complex dissociated with a rate constant of 4-10(-2) sec-1 at 29 degrees C. The binding was sensitive to pH and to the antibodies produced against the protein. On lowering the pH from 7 to 4 the binding affinity decreased approximately 100-fold and below pH 4, the binding could not be detected at all. These data, together with those obtained by measuring the fluorescence intensities of riboflavin in presence of N-bromosuccinimide oxidized- and disulphide reduced apoprotein, suggest that carboxyl functions, 1-2 tryptophan residues and 2-3 disulphide bridges are essential for binding. The emission spectra of the protein under different conditions upon excitation at 280 and 295 nm were analyzed to calculate the quantum yield (Q) and the efficiency of energy transfer (e) from tyrosine to tryptophan residues. From these data it was concluded that the energy transfer did not occur with equal efficiency under all conditions and that the tryptophan residues responsible for the riboflavin binding are more accessible to N-bromosuccinimide oxidation than others.  相似文献   

10.
C A Royer  P Tauc  G Hervé  J C Brochon 《Biochemistry》1987,26(20):6472-6478
The polarization of the fluorescence and the real-time fluorescence intensity decay of the two tryptophan residues of aspartate transcarbamylase from Escherichia coli were studied as a function of temperature. The protein was dissolved in an 80% glycerol/buffer mixture, and temperatures were varied between -40 and 20 degrees C in order to limit the depolarization to local rotations of the tryptophans. Two fluorescent species contribute to over 95% of the emission. They differ in their fluorescence lifetimes by approximately 4 ns depending upon the temperature observed and their fractional contributions to the total intensity. The Y-plot analysis of the polarization and lifetime data allows for the distinction of two rotational species by their critical amplitude of rotation, the first being component 1 and the second being component 2. We suggest that these two species correspond to the two tryptophan residues of the protein. The polarization and lifetime experiments were carried out for ATCase in presence of the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate (PALA) and in presence of the nucleotide effector molecules ATP and CTP. The binding of PALA results in an increase in the thermal coefficient of frictional resistance to rotation of tryptophan 1 and a decrease in that of tryptophan 2. ATP binding does not affect the degree to which the protein hinders tryptophan rotation but does result in a change in the critical amplitude of rotation of tryptophan 2. The results obtained in the presence of CTP are similar to those obtained with PALA.  相似文献   

11.
The steady-state and time-resolved fluorescence properties of two zinc-saturated 18-residue synthetic peptides with the amino acid sequence of the NH2-terminal (NCp7 13-30 F16W, where the naturally occurring Phe was replaced by a Trp residue) and the COOH-terminal (NCp7 34-51) zinc finger domains of human immunodeficiency virus type I nucleocapsid protein were investigated. Fluorescence intensity decay of both Trp 16 and Trp 37 residues suggested the existence of two fully solvent-exposed ground-state classes governed by a C = 2.2 equilibrium constant. The lifetimes of Trp 16 classes differed from those of Trp 37 essentially because of differences in nonradiative rate constants. Arrhenius plots of the temperature-dependent nonradiative rate constants suggested that the fluorescence quenchers involved in both classes and in both peptides were different and the collisional rate of these quenchers with the indole ring was very low, probably because of the highly constrained peptide chain conformation. The nature of the ground-state classes was discussed in relation to 1H nuclear magnetic resonance data. Using Trp fluorescence to monitor the interaction of both peptides with tRNA(Phe) we found that a stacking between the indole ring of both Trp residues and the bases of tRNA(Phe) occurred. This stacking constituted the main driving force of the interaction and modified the tRNA(Phe) conformation. Moreover, the binding of both fingers to tRNA(Phe) was noncooperative with similar site size (3 nucleotide residues/peptide), but the affinity of the NH2-terminal finger domain (K = 1.3 (+/- 0.2) 10(5) M-1) in low ionic strength buffer was one order of magnitude larger than the COOH-terminal one due to additional electrostatic interactions involving Lys 14 and/or Arg 29 residues.  相似文献   

12.
P K Bandyopadhyay  C W Wu 《Biochemistry》1978,17(19):4078-4085
Nanosecond and steady-state fluorescence spectoscopy were used to probe the environment of the tryptophan residues of Escherichia coli DNA-binding protein. A spectral shift and a change in quantum yield of the protein upon binding to DNA or oligonucleotides indicate that the tryptophan residues are near or at the DNA binding site. The observation of two excited-state lifetimes of the protein indicates that there is heterogeneity in the microenvironments of these tryptophan residues. The "short-lifetime" tryptophan residues are more sensitive to the interaction with DNA than the "long-lifetime" residues. The results of solute-perturbation studies with iodide or acrylamide indicate that there are tryptophan residues near the surface of the protein which are heterogeneous in their accessibility to these quenchers and that they become less accessible after DNA binding. Also, lysine residues of the protein have been shown to be essential to DNA binding by chemical-modification studies. Tyrosine, arginine, and cysteine residues appear not to be involved in this binding process. From studies of the decay of fluorescence anisotropy of the binding protein in the presence and absence of DNA, it has been concluded that (a) the tetrameric binding protein does not dissociate into subuniits upon binding to the oligonucleotide d(pT)16 and (b) the binding protein-fd DNA complex possesses "local flexibility" and, therefore, cannot be described as a continuous, rigid rod.  相似文献   

13.
Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of structurally diverse alkylated and oxidized purine lesions from DNA to initiate the base excision repair pathway. Recognition of a base lesion requires flipping of the damaged nucleotide into a relatively open active site pocket between two conserved tyrosine residues, Y127 and Y159. We have mutated each of these amino acids to tryptophan and measured the kinetic effects on the nucleotide flipping and base excision steps. The Y127W and Y159W mutant proteins have robust glycosylase activity toward DNA containing 1,N(6)-ethenoadenine (εA), within 4-fold of that of the wild-type enzyme, raising the possibility that tryptophan fluorescence could be used to probe the DNA binding and nucleotide flipping steps. Stopped-flow fluorescence was used to compare the time-dependent changes in tryptophan fluorescence and εA fluorescence. For both mutants, the tryptophan fluorescence exhibited two-step binding with essentially identical rate constants as were observed for the εA fluorescence changes. These results provide evidence that AAG forms an initial recognition complex in which the active site pocket is perturbed and the stacking of the damaged base is disrupted. Upon complete nucleotide flipping, there is further quenching of the tryptophan fluorescence with coincident quenching of the εA fluorescence. Although these mutations do not have large effects on the rate constant for excision of εA, there are dramatic effects on the rate constants for nucleotide flipping that result in 40-100-fold decreases in the flipping equilibrium relative to wild-type. Most of this effect is due to an increased rate of unflipping, but surprisingly the Y159W mutation causes a 5-fold increase in the rate constant for flipping. The large effect on the equilibrium for nucleotide flipping explains the greater deleterious effects that these mutations have on the glycosylase activity toward base lesions that are in more stable base pairs.  相似文献   

14.
Mutants of the Tn10-encoded Tet repressor containing single or no tryptophan residues were constructed by oligonucleotide-directed mutagenesis. The Trp-75 to Phe exchange reduces the dissociation rate of the complex with the inducer tetracycline by a factor of 2. The Trp-43 to Phe exchange has no effect on inducer binding. The fluorescence emission spectra of both tryptophan residues are quenched to a different extent by binding of tetracycline: Trp-75 is quenched to zero and Trp-43 to only 50%. It is concluded that Trp-75 is in the vicinity of the inducer binding site. The different fluorescence emission spectra of both tryptophan residues depend on the native structure of Tet repressor. Quenching studies with iodide indicate that the DNA binding motif is solvent exposed in free repressor and moves towards the interior of the protein upon inducer binding. The inducer binding site is in the interior of the protein. The fluorescence of tetracycline is enhanced upon binding to Tet repressor. The excitation at 280 nm results mainly from the change in environment and in part from energy transfer from tryptophan to the drug.  相似文献   

15.
J Ellis  I A Murray  W V Shaw 《Biochemistry》1991,30(44):10799-10805
Replacement by tyrosine or phenylalanine was used to assign the additive contributions of each of the three tryptophan residues of chloramphenicol acetyltransferase (CAT) to its intrinsic fluorescence on excitation at 295 nm. During the assessment of the fluorescence responses of the wild-type enzyme to the binding of ligands, it was found that the overlapping absorption spectra of chloramphenicol and tryptophan, with an attendant inner filter effect, required the use of a displacement technique involving an alternative substrate (the p-cyano analogue of chloramphenicol) without significant absorption at 295 nm. By the use of two-Trp, one-Trp, and Trp-less variants, in combination with this displacement technique, it was possible to demonstrate that Trp-86 and Trp-152 are involved in the fluorescence quenching associated with the binding of chloramphenicol, most likely via nonradiative energy transfer from these residues to the bound substrate. Trp-152 is mainly responsible for the fluorescence enhancement accompanying the binding of acetyl-CoA (and CoA) through proximity effects and solvent exclusion on substrate association.  相似文献   

16.
Trichloroethanol is an efficient quencher of indole fluorescence of model compounds and proteins [Eftink, M. R. and Ghiron, C. A. (1976) J. Phys. Chem. 80, 486--493]. At low quencher concentrations, the quenching follows the classical Stern-Volmer law. Bimolecular rate constants calculated from measured quenching constants and lifetimes are equal to 6 X 10(9) M-1s-1 and 1.2 X 10(9) M-1s-1 for N-acetyltrypotophanamide and wheat germ agglutinin, respectively. Upon ultraviolet irradiation in the presence of trichloroethanol, transformation of fluorescent tryptophan occurs, leading to a fluorescent photoproduct. This can be easily used as a method for the quantitative determination of fluorescent tryptophan residues in proteins. In good agreement with previous results, two fluorescent tryptophan residues per polypeptide chain are found in wheat germ agglutinin. Concomitantly with the photochemical reactions, the hemagglutinating protein activity and its affinity constant towards chitin oligomers are reduced. A probable location of tryptophan residues in the binding sites of wheat germ agglutinin is proposed.  相似文献   

17.
The intrinsic fluorescence decay of human Cu,Zn superoxide dismutase was measured by frequency-domain techniques. The protein consists of two subunits, each containing one tryptophan and no tyrosine residues. Using a synchrotron radiation source, which allows facile selection of the excitation wavelength, the dependence of the emission decay upon excitation was studied. No significant excitation wavelength effects were found. The two tryptophans contained in the dimer, although fully equivalent and exposed to solvent, showed a fluorescence decay that cannot be described by a single lifetime. Either two lifetimes, or one Lorentzian-shaped continuous distribution of lifetimes, are needed to obtain a good fit. Under identical experimental conditions, control experiments showed that N-acetyltryptophanamide, an analogue of tryptophanyl residues in proteins, decays with a single lifetime. The heterogeneous decay of tryptophan fluorescence in superoxide dismutase is interpreted as due to the presence of static and/or dynamic conformers in the protein that decay with different lifetimes. The two models of discrete lifetimes and continuous distribution of lifetimes are discussed with reference to measurements on holo- and apo-human superoxide dismutase.  相似文献   

18.
Protein fluorescence is a powerful tool for studying protein structure and dynamics if we have a means to interpret the spectral data in terms of protein structural properties. Our previous research successfully provided this support through the development of individual software modules implementing the algorithms for fluorescence and structural analyses. Now we have integrated the developed software modules, introduced a new program for the assignment of tryptophan residues to spectral-structural classes, and created a web-based toolkit PFAST: protein fluorescence and structural toolkit: http://pfast.phys.uri.edu/. PFAST contains three modules: (1) FCAT is a fluorescence-correlation analysis tool, which decomposes protein fluorescence spectra to reveal the spectral components of individual tryptophan residues or groups of tryptophan residues located close to each other, and assigns spectral components to one of five previously established spectral-structural classes. (2) SCAT is a structural-correlation analysis tool for the calculation of the structural parameters of the environment of tryptophan residues from the atomic structures of the proteins from the Protein Data Bank (PDB), and for the assignment of tryptophan residues to one of five spectral-structural classes. (3) The last module is a PFAST database that contains protein fluorescence and structural data obtained from results of the FCAT and SCAT analyses.  相似文献   

19.
Oncomodulin is a 108-residue, oncodevelopmental protein containing two calcium-binding sites identified as the CD- and EF-loops. The protein contains no tryptophan and only two tyrosine residues, one which is a calcium ligand in the CD-loop (Tyr-57) and one which lies in the flanking D-helix of this loop (Tyr-65). Site-specific mutagenesis was performed to yield five mutants, two with phenylalanine substituted for tyrosine in positions 57 and 65 and three with tryptophan substituted into position 57 in the CD-loop, position 65 in the D-helix, and position 96 in the EF-loop. The single Tyr-containing mutants demonstrated that position 57 was perturbed to a significantly greater extent than position 65 upon calcium binding. Although both tyrosine residues responded to decalcification, the fluorescence intensity changes were in opposite directions, with the more dominant Tyr-57 accounting for the majority of the intrinsic fluorescence observed in native oncomodulin. The substitution of tryptophan for each tyrosyl residue revealed that in both positions the tryptophan resided in polar, conformationally heterogeneous environments. The environment of Trp-57 was affected by Ca2+ binding to a much greater extent compared to that of Trp-65. Only 1 equiv of Ca2+ was required to produce greater than 70% of the Trp fluorescence changes in positions 57 and 65, indicating that Ca2+ binding to the higher affinity EF-loop had a pronounced effect on the protein structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The fluorescence emission of the single tryptophan (W233) of the mutant protein DD-carboxypeptidase from streptomyces is characterized by a red-edge excitation shift (REES), i.e., the phenomenon that the wavelength of maximum emission depends on the excitation wavelength. This phenomenon is an indication for a strongly reduced dynamic environment of the single tryptophan, which has a very low accessibility to the solvent. The REES shows, however, an unusual temperature and time dependence. This, together with the fluorescence lifetime analysis, showing three resolvable lifetimes, can be explained by the presence of three rotameric states that can be identified using the Dead-End Elimination method. The three individual lifetimes increase with increasing emission wavelength, indicating the presence of restricted protein dynamics within the rotameric states. This is confirmed by time-resolved anisotropy measurements that show dynamics within the rotamers but not among the rotamers. The global picture is that of a protein with a single buried tryptophan showing strongly restricted dynamics within three distinct rotameric states with different emission spectra and an anisotropic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号