首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zebrafish retina contains five morphologically distinct classes of photoreceptors, each expressing a distinct type of opsin gene. Molecular mechanisms underlying specification of opsin expression and differentiation among the cell types are largely unknown. This is partly because mutants affected with expression of a particular class of opsin gene are difficult to find. In this study we established the transgenic lines of zebrafish carrying green fluorescent protein (GFP) gene under the 1.1-kb and 3.7-kb upstream regions of the rod-opsin gene. In transgenic fish, GFP expression initiated and proceeded in the same spatiotemporal pattern with rod-opsin gene. The retinal section from adult transgenic fish showed GFP expression throughout the rod cell layer. These results indicate that the proximal 1.1-kb region is sufficient to drive gene expression in all rod photoreceptor cells. These transgenic fish should facilitate screening of mutants affected specifically with rod-opsin expression or rod cell development by visualization of rod cells by GFP.  相似文献   

2.
To gain insight into the genetic mechanisms of photoreceptor development, we analyzed a collection of zebrafish mutations characterized by early photoreceptor cell loss. The mutant defects impair outer segment formation and are accompanied by an abnormal distribution of visual pigments. Rods and different cone types display defects of similar severity suggesting that genetic pathways common to all photoreceptors are affected. To investigate whether these phenotypes involve cell–cell interaction defects, we analyzed genetically mosaic animals. Interaction of niezerka photoreceptors with wild-type tissues improves the survival of mutant cells and restores their elongated morphology. In contrast, cells carrying mutations in the loci brudas, elipsa, fleer, and oval retain their defective phenotypes in a wild-type environment indicating cell-autonomy. These experiments identify distinct phenotypic categories of photoreceptor mutants and indicate that zebrafish photoreceptor defects involve both cell-autonomous and cell-nonautonomous mechanisms.  相似文献   

3.
The anatomical organization of the Drosophila ommatidia is achieved by specification and contextual placement of photoreceptors, cone and pigment cells. The photoreceptors must be sealed from high ionic concentrations of the hemolymph by a barrier to allow phototransduction. In vertebrates, a blood-retinal barrier (BRB) is established by tight junctions (TJs) present in the retinal pigment epithelium and endothelial membrane of the retinal vessels. In Drosophila ommatidia, the junctional organization and barrier formation is poorly understood. Here we report that septate junctions (SJs), the vertebrate analogs of TJs, are present in the adult ommatidia and are formed between and among the cone and pigment cells. We show that the localization of Neurexin IV (Nrx IV), a SJ-specific protein, coincides with the location of SJs in the cone and pigment cells. Somatic mosaic analysis of nrx IV null mutants shows that loss of Nrx IV leads to defects in ommatidial morphology and integrity. nrx IV hypomorphic allelic combinations generated viable adults with defective SJs and displayed a compromised blood-eye barrier (BEB) function. These findings establish that SJs are essential for ommatidial integrity and in creating a BEB around the ion and light sensitive photoreceptors. Our studies may provide clues towards understanding the vertebrate BEB formation and function.  相似文献   

4.
Molecular analysis of vertebrate eye development has been hampered by the availability of sequences that can selectively direct gene expression in the developing eye. We report the characterization of the regulatory sequences of the Xenopus laevis Rx1A gene that can direct gene expression in the retinal progenitor cells. We have used these sequences to investigate the role of Fibroblast Growth Factor (FGF) signaling in the development of retinal cell types. FGFs are signaling molecules that are crucial for correct patterning of the embryo and that play important roles in the development of several embryonic tissues. FGFs and their receptors are expressed in the developing retina, and FGF receptor-mediated signaling has been implicated to have a role in the specification and survival of retinal cell types. We investigated the role of FGF signaling mediated by FGF receptor 4a in the development of retinal cell types in Xenopus laevis. For this purpose, we have made transgenic Xenopus tadpoles in which the dominant-negative FGFR4a (Delta FGFR4a) coding region was linked to the newly characterized regulatory sequences of the Xrx1A gene. We found that the expression of Delta FGFR4a in retinal progenitor cells results in abnormal retinal development. The retinas of transgenic animals expressing Delta FGFR4a show disorganized cell layering and specifically lack photoreceptor cells. These experiments show that FGFR4a-mediated FGF signaling is necessary for the correct specification of retinal cell types. Furthermore, they demonstrate that constructs using Xrx1A regulatory sequences are excellent tools with which to study the developmental processes involved in retinal formation.  相似文献   

5.
6.
We have examined the generation and development of glial cells in the first optic ganglion, the lamina, of Drosophila melanogaster. Previous work has shown that the growth of retinal axons into the developing optic lobes induces the terminal cell divisions that generate the lamina monopolar neurons. We investigated whether photoreceptor ingrowth also influences the development of lamina glial cells, using P element enhancer trap lines, genetic mosaics and birthdating analysis. Enhancer trap lines that mark the differentiating lamina glial cells were found to require retinal innervation for expression. In mutants with only a few photoreceptors, only the few glial cells near ingrowing axons expressed the marker. Genetic mosaic analysis indicates that the lamina neurons and glial cells are readily separable, suggesting that these are derived from distinct lineages. Additionally, BrdU pulse-chase experiments showed that the cell divisions that produce lamina glia, unlike those producing lamina neurons, are not spatially or temporally correlated with the retinal axon ingrowth. Finally, in mutants lacking photoreceptors, cell divisions in the glial lineage appeared normal. We conclude that the lamina glial cells derive from a lineage that is distinct from that of the L-neurons, that glia are generated independently of photoreceptor input, and that completion of the terminal glial differentiation program depends, directly or indirectly, on an inductive signal from photoreceptor axons.  相似文献   

7.
8.
We sought to characterize the regenerated cells, if any, when photoreceptor ablation was mostly limited to a particular cone subtype. This allowed us to uniquely assess whether the remaining cells influence specification of regenerating photoreceptors. The ability to replace lost photoreceptors via stem cell therapy holds promise for treating many retinal degenerative diseases. Zebrafish are potent for modelling this because they have robust regenerative capacity emanating from endogenous stem cells, and abundant cone photoreceptors including multiple spectral subtypes similar to human fovea. We ablated the homolog of the human S-cones, the ultraviolet-sensitive (UV) cones, and tested the hypothesis that the photoreceptors regenerating in their place take on identities matching those expected from normal cone mosaic development. We created transgenic fish wherein UV cones can be ablated by addition of a prodrug. Thus photoreceptors developed normally and only the UV cones expressed nitroreductase; the latter converts the prodrug metronidazole to a cell-autonomous neurotoxin. A significant increase in proliferation of progenitor cell populations (p<0.01) was observed when cell ablation was primarily limited to UV cones. In control fish, we found that BrdU primarily incorporated into rod photoreceptors, as expected. However the majority of regenerating photoreceptors became cones when retinal cell ablation was predominantly restricted to UV cones: a 2-fold increase in the relative abundance of cones (p = 0.008) was mirrored by a 35% decrease in rods. By primarily ablating only a single photoreceptor type, we show that the subsequent regeneration is biased towards restoring the cognate photoreceptor type. We discuss the hypothesis that, after cone death, the microenvironment formed by the remaining retinal cells may be influential in determining the identity of regenerating photoreceptors, though other interpretations are plausible. Our novel animal model provides control of ablation that will assist in identifying mechanisms required to replace cone photoreceptors clinically to restore daytime vision.  相似文献   

9.
10.
Retinol dehydrogenase 12 (RDH12) is an NADP(+)-dependent oxidoreductase that in vitro catalyzes the reduction of all-trans-retinaldehyde to all-trans-retinol or the oxidation of retinol to retinaldehyde depending on substrate and cofactor availability. Recent studies have linked the mutations in RDH12 to severe early-onset autosomal recessive retinal dystrophy. The biochemical basis of photoreceptor cell death caused by mutations in RDH12 is not clear because the physiological role of RDH12 is not yet fully understood. Here we demonstrate that, although bi-directional in vitro, in living cells, RDH12 acts exclusively as a retinaldehyde reductase, shifting the retinoid homeostasis toward the increased levels of retinol and decreased levels of bioactive retinoic acid. The retinaldehyde reductase activity of RDH12 protects the cells from retinaldehyde-induced cell death, especially at high retinaldehyde concentrations, and this protective effect correlates with the lower levels of retinoic acid in RDH12-expressing cells. Disease-associated mutants of RDH12, T49M and I51N, exhibit significant residual activity in vitro, but are unable to control retinoic acid levels in the cells because of their dramatically reduced affinity for NADPH and much lower protein expression levels. These results suggest that RDH12 acts as a regulator of retinoic acid biosynthesis and protects photoreceptors against overproduction of retinoic acid from all-trans-retinaldehyde, which diffuses into the inner segments of photoreceptors from illuminated rhodopsin. These results provide a novel insight into the mechanism of retinal degeneration associated with mutations in RDH12 and are consistent with the observation that RDH12-null mice are highly susceptible to light-induced retinal apoptosis in cone and rod photoreceptors.  相似文献   

11.
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7-14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene.  相似文献   

12.
Embryos from mutagenized zebrafish were screened for disruptions in retinal lamination to identify factors involved in vertebrate retinal cell specification and differentiation. Two alleles of a recessive mutation, young, were isolated in which final differentiation and normal lamination of retinal cells were blocked. Early aspects of retinogenesis including the specification of cells along the inner optic cup as retinal tissue, polarity of the retinal neuroepithelium, and confinement of cell divisions to the apical pigmented epithelial boarder were normal in young mutants. BrdU incorporation experiments showed that the initiation and pattern of cell cycle withdrawal across the retina was comparable to wild-type siblings; however, this process took longer in the mutant. Analysis of early markers for cell type differentiation revealed that each of the major classes of retinal neurons, as well as non-neural Müller glial cells, are specified in young embryos. However, the retinal cells fail to elaborate morphological specializations, and analysis of late cell-type-specific markers suggests that the retinal cells were inhibited from fully differentiating. Other regions of the nervous system showed no obvious defects in young mutants. Mosaic analysis demonstrated that the young mutation acts non-cell-autonomously within the retina, as final morphological and molecular differentiation was rescued when genetically mutant cells were transplanted into wild-type hosts. Conversely, differentiation was prevented in wild-type cells when placed in young mutant retinas. Mosaic experiments also suggest that young functions at or near the cell surface and is not freely diffusible. We conclude that the young mutation disrupts the post-specification development of all retinal neurons and glia cells.  相似文献   

13.
We previously reported that Otx2 is essential for photoreceptor cell fate determination; however, the functional role of Otx2 in postnatal retinal development is still unclear although it has been reported to be expressed in retinal bipolar cells and photoreceptors at postnatal stages. In this study, we first examined the roles of Otx2 in the terminal differentiation of photoreceptors by analyzing Otx2; Crx double-knockout mice. In Otx2+/-; Crx-/- retinas, photoreceptor degeneration and downregulation of photoreceptor-specific genes were much more prominent than in Crx-/- retinas, suggesting that Otx2 has a role in the terminal differentiation of the photoreceptors. Moreover, bipolar cells decreased in the Otx2+/-; Crx-/- retina, suggesting that Otx2 is also involved in retinal bipolar-cell development. To further investigate the role of Otx2 in bipolar-cell development, we generated a postnatal bipolar-cell-specific Otx2 conditional-knockout mouse line. Immunohistochemical analysis of this line showed that the expression of protein kinase C, a marker of mature bipolar cells, was significantly downregulated in the retina. Electroretinograms revealed that the electrophysiological function of retinal bipolar cells was impaired as a result of Otx2 ablation. These data suggest that Otx2 plays a functional role in the maturation of retinal photoreceptor and bipolar cells.  相似文献   

14.
15.
Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.  相似文献   

16.
Multipotential retinal precursors give rise to all cell types seen in multilayered retina. The generation of differentiation and diversity of neuronal cell types is determined by both extrinsic regulatory signals and endogenous genetic programs. We have previously reported that cell commitment in human retinal precursor cells (SV-40T) can be modified in response to exogenous growth factors, basic fibroblast growth factor, and transforming growth factor alpha (bFGF and TGFalpha). We report in this study that nontransformed human retinal precursors differentiate into photoreceptors by a cell density-dependent mechanism, and the effects were potentiated by bFGF and TGFalpha alone or in combination. A larger proportion of multipotential precursors plated at a density of 1 x 10(4) cells/cm(2) differentiated into neurons (photoreceptors) compared to cells plated at 3-5 x 10(4)/cm(2) and 1 x 10(5) cells/cm(2) under serum-free conditions and the effects were amplified seven- to eightfold in response to growth factors. Basic fibroblast growth factor (bFGF) and TGFalpha can induce 90% of the cells to assume a photoreceptor phenotype at a lower cell density, compared to only 30 and 25% of the cells acquiring a photoreceptor phenotype at intermediate and higher cell densities. Furthermore, at a lower cell density, 60-70% of the cells incorporate Bromodeoxyuridine (Brdu), suggesting that cells in a cell cycle may make a commitment to a specific fate in response to neurotrophins. Neurons with a photoreceptor phenotype were positive for three different sets of antibodies for rods/cones. Cells also exhibited upregulation of other proteins such as a D4 receptor protein expressed in photoreceptors, protein kinase Calpha (PKCalpha) expressed in rod bipolars and blue cones, and some other neuronal cell types. This was also confirmed by Western blot analysis. Newly derived photoreceptors survive for a few days before significant cell death ensues under serum-free conditions. To summarize, differentiation in precursors is density dependent, and growth factors amplify the effects.  相似文献   

17.
L. B. Bender  P. J. Kooh    MAT. Muskavitch 《Genetics》1993,133(4):967-978
Delta (Dl) encodes a cell surface protein that mediates cell-cell interactions central to the specification of a variety of cell fates during embryonic and postembryonic development of Drosophila melanogaster. We find that the Delta protein is expressed intermittently in follicle cells and in germ-line cells during stages 1-10 of oogenesis. Furthermore, Delta expression during oogenesis can be correlated with a number of morphogenetic defects associated with sterility observed in Dl mutant females, including failure of stalk formation within the germarium and subsequent fusion of egg chambers, necrosis in germ-line cells, and multiphasic embryonic arrest of fertilized eggs. We have also identified a Dl mutation that leads to context-dependent defects in Dl function during oogenesis. Direct comparison of Delta protein expression with that of the Notch protein in the ovary reveals substantial, but incomplete, coincidence of expression patterns in space and time. We discuss possible roles for the Delta protein in cell-cell interactions required for cell fate specification processes during oogenesis in light of available developmental and histochemical data.  相似文献   

18.
Retinoschisin or RS1 is a discoidin domain-containing protein encoded by the gene responsible for X-linked retinoschisis (XLRS), an early onset macular degeneration characterized by a splitting of the retina. Retinoschisin, expressed and secreted from photoreceptors and bipolar cells as a homo-octameric complex, associates with the surface of these cells where it serves to maintain the cellular organization of the retina and the photoreceptor-bipolar synaptic structure. To gain insight into the role of retinoschisin in retinal cell adhesion and the pathogenesis of XLRS, we have investigated membrane components in retinal extracts that interact with retinoschisin. Unlike the discoidin domain-containing blood coagulation proteins Factor V and Factor VIII, retinoschisin did not bind to phospholipids or retinal lipids reconstituted into unilamellar vesicles or immobilized on microtiter plates. Instead, co-immunoprecipitation studies together with mass spectrometric-based proteomics and Western blotting showed that retinoschisin is associated with a complex consisting of Na/K ATPase (alpha3, beta2 isoforms) and the sterile alpha and TIR motif-containing protein SARM1. Double labeling studies for immunofluorescence microscopy confirmed the co-localization of retinoschisin with Na/K ATPase and SARM1 in photoreceptors and bipolar cells of retina tissue. We conclude that retinoschisin binds to Na/K ATPase on photoreceptor and bipolar cells. This interaction may be part of a novel SARM1-mediated cell signaling pathway required for the maintenance of retinal cell organization and photoreceptor-bipolar synaptic structure.  相似文献   

19.
RPE65 is the isomerohydrolase in the retinoid visual cycle essential for recycling of 11-cis retinal, the chromophore for visual pigments in both rod and cone photoreceptors. Mutations in the RPE65 gene are associated with inherited retinal dystrophies with unknown mechanisms. Here we show that two point mutations of RPE65, R91W and Y368H, identified in patients with retinal dystrophies both abolished the isomerohydrolase activity of RPE65 after a subretinal injection into the Rpe65-/- mice and in the in vitro isomerohydrolase activity assay, independent of their protein levels. Further, the R91W and Y368H mutants showed significantly decreased protein levels but unchanged mRNA levels when compared with the wild-type RPE65 (wtRPE65). Protein stability analysis showed that wtRPE65 is a fairly stable protein, with an apparent half-life longer than 10 h, when expressed in 293A cells. Under the same conditions, mutants R91W and Y368H both showed substantially decreased protein stabilities, with half-lives less than 2 and 6 h, respectively. Subcellular fractionation and Western blot analysis demonstrated that wtRPE65 predominantly exists in the membrane fraction, while both of the mutants are primarily distributed in the cytosolic fraction, suggesting that these mutations disrupt the membrane association of RPE65. However, palmitoylation assay showed that wtRPE65 and both of the mutants were palmitoylated. These results suggest that these mutations may result in critical structural alterations of RPE65 protein, disrupt its membrane association, and consequently impair its isomerohydrolase activity, leading to retinal degeneration.  相似文献   

20.
We have cloned and sequenced the displacement-loop (D-loop) region of the mitochondrial DNA (mtDNA) from the European seabass Dicentrarchus labrax (Dl). This sequencing revealed the presence of four tandemly repeated elements (R1, R2, R3 and R4); the individual variation in mtDNA total length is entirely accounted for by their variable number. The individuals examined also possessed an imperfect copy of one of the tandem repeats (ΨR2). At least one termination-associated sequence (TAS) is present in each of the repeats and in two copies 5′ upstream from the tandem array as well. The alignment of the Dl D-loop region with D-loop sequences from four other Teleosts and one Chondrosteus showed the Dl sequence to be larger than that of other fish. The extraordinary length of the D1 D-loop sequence is also due to the 5′ and 3′ regions that are flanking the tandem array, the largest ones to date analyzed in fish. In this study, we also report the unique organization and localization of putative TAS and conserved-sequence block (CSB) elements, and the presence of a conserved 218-bp sequence in the D1 D-loop region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号