首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide synthases (NOS), the enzymes responsible for the NO synthesis, are present in all eukaryotes. Three isoforms (neuronal, inducible and endothelial), encoded by different loci, have been described in vertebrates, although the endothelial isoform seems to be restricted to tetrapods. In invertebrates, a variety of NOS isoforms have been variably annotated as "inducible" or "neuronal", while others lack precise annotation. We have performed an exhaustive collection of the available NOS amino-acid sequences in order to perform a phylogenetic analysis. We hypothesized that the NOS isoforms reported in vertebrates derive from 1) different invertebrate NOS, 2) a single invertebrate ancestral gene, through an event related to the double whole genomic duplication that occurred at the origin of vertebrates, and 3) the endothelial form of NOS appeared late in the evolution of vertebrates, after the split of tetrapods and fishes. Our molecular evolution analysis strongly supports the second scenario, the three vertebrate NOS isoforms derived from a single ancestral invertebrate gene. Thus, the diverse NOS isoforms in invertebrates can be explained by events of gene duplication, but their characterization as "inducible" or "neuronal" should only be justified by physiological features, since they are evolutionarily unrelated to the homonym isoforms of vertebrates.  相似文献   

2.
Nitric oxide acts as an important intracellular messenger in a variety of systems, including reproduction. Previous studies have shown the importance of nitric oxide in embryo development. NO is produced from l-arginine by the enzyme, nitric oxide synthase (NOS), which has three isoforms: endothelial (NOS3), neural (NOS1), and inducible (NOS2). We hypothesize that, because of the importance of NOS in development, at least two NOS isoforms are required in order for normal embryo development to occur. Through the generation of NOS3/NOS2, NOS3/NOS1, and NOS2/NOS1 double knockout mice, we found that while litter size remains unchanged, the expected number of generated double knockout mice varies significantly from what would be predicted by Mendelian genetics. Estrous cycles were similar for both DKO and the wild-type mice, and both groups were deemed fertile by their ability to mate with wild-type (CD-1) mice. Together, these results lead us to conclude that the lack of two NOS isoforms leads to a decreased viability in mice because of a developmental problem in the double knockout embryo.  相似文献   

3.
We determined the cellular mRNA expression of all intrarenal nitric oxide (NO)-producing NO synthase (NOS) isoforms, endothelial NOS (eNOS) and neuronal NOS (nNOS) and inducible NOS (iNOS) in kidneys from wild-type mice (WT) and immune deficient Toll-like receptor 4 (TLR4) mutant mice, during normal physiological conditions and during a short-term (6–16 h) endotoxic condition caused by systemically administered lipopolysaccaride (LPS). Investigations were performed by means of in situ hybridization and polymerase chain reaction amplification techniques. In WT, LPS altered the expression rate of all intrarenal NOS isoforms in a differentiated but NOS-isoform coupled expression pattern, with iNOS induction, and up- and down-regulation of the otherwise constitutively expressed NOS isoforms, e.g. eNOS and nNOS and an iNOS isotype. In TLR4 mutants, LPS caused none or a lowered iNOS induction, but altered the expression rate of the constitutive NOS isoforms. It is concluded that the intrarenal spatial relation of individual NOS-isoforms and their alteration in expression provide the basis for versatile NO-mediated renal actions that may include local interactions between NOS isoforms and their individual NO-target sites, and that the NOS-isoform dependent events are regulated by TLR4 during endotoxic processes. These regulatory mechanisms are likely to participate in different pathophysiological conditions affecting NO-mediated renal functions.  相似文献   

4.
New derivatives of L-thiocitrulline were prepared and assayed as inhibitors of the three isoforms of nitric oxide synthase. These compounds demonstrated weak inhibitory activity against the NOS isoforms and these results directly support a recently described model of the L-arginine binding site of NOS.  相似文献   

5.
Calcitonin gene-related peptide (CGRP) inhibits myometrial contractile activity. However, the responsiveness of the mouse myometrium to CGRP is dependent on the hormonal and gestational stage. The inhibitory effect of CGRP in the myometrium is prominent during gestation and declines at parturition. The present study was undertaken to examine if nitric oxide (NO) production by nitric oxide synthase (NOS) isoforms mediates the inhibitory action of CGRP on uterine contractions as has been suggested earlier. Transgenic mice deficient in either of the three major NOS isoforms: endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS) were used. Isometric force measurements on myometrial strips obtained from NOS-deficient mice were carried out and the inhibitory capacity of CGRP was monitored. CGRP inhibited KCl-induced contractions of the myometrial strips obtained from eNOS(-/-), iNOS(-/-), and nNOS(-/-) mice with equal efficiency as in wild-type animals. Additionally, NOS protein expression in the mouse uterus during gestation and during the estrous cycle was examined by means of Western immunoblot analysis. No correlation between NOS expression and inhibitory activity of CGRP was evident. The results suggest that the inhibitory action of CGRP in the mouse uterus is independent of the activity of these NOS isoforms.  相似文献   

6.
Hussain, Sabah N. A., Qasim El-Dwairi, Mohammed N. Abdul-Hussain, and Dalia Sakkal. Expression of nitric oxidesynthase isoforms in normal ventilatory and limb muscles.J. Appl. Physiol. 83(2): 348-353, 1997.Nitric oxide (NO), an important messenger molecule withwidespread actions, is synthesized by NO synthases (NOS). In thisstudy, we investigated the correlation between fiber type and NOSactivity among ventilatory and limb muscles of various species. We alsoassessed the presence of the three NOS isoforms in normal skeletalmuscles and how various NOS inhibitors influence muscle NOS activity.NOS activity was detected in various muscles; however, NOS activity inrabbits and rats varied significantly among different muscles.Immunoblotting of muscle samples indicated the presence of both theneuronal NOS and the endothelial NOS isoforms but not thecytokine-inducible NOS isoform. However, these isoforms were expressedto different degrees in various muscles. Although the neuronal NOSisoform was detectable in the canine diaphragm, very weak expressionwas detected in rabbit, rat, and mouse diaphragms. The endothelial NOSisoform was detected in the rat and mouse diaphragms but not in thecanine and rabbit diaphragms. We also found thatNG-nitro-L-arginine methyl ester,7-nitroindazole, andS-methylisothiourea werestronger inhibitors of muscle NOS activity than was aminoguanidine. These results indicate the presence of different degrees ofconstitutive NOS expression in normal ventilatory and limb muscles ofvarious species. Our data also indicate that muscle NOS activity is not determined by fiber type distribution but by other not yet identified factors. The functional significance of this expression remains to beassessed.

  相似文献   

7.
In the enteric nervous system, nitric oxide (NO) is regarded as an important messenger for the non-adrenergic and non-cholinergic neurotransmission. Synthesized mainly by the constitutive nitric oxide synthase (NOS) isoforms NOS I and NOS III, this molecule exerts prejunctional inhibitory effects in the submucosal plexus as well as relaxation of enteric smooth muscles. In order to elucidate the role for NO during enteric development, we looked for the expression of all three NOS-isoforms in the enteric nervous system during mouse development from E8 to E20 using immunohistochemistry. Starting around midgestation, a transient expression of the NOS-II isoform during the very early development of enteric neurones was detected in parallel to that of HNK-1 exclusively in the myenteric plexus. Similar to findings for other neuronal systems, NOS-I and NOS III isoforms could be traced starting significantly later to increase toward the end of embryonic development when NOS II immunoreactivity faded and a strong expression of the vasointestinal peptide could be detected. In contrast to the NOSII expression, the constitutive isoforms can also be detected in the submucosal plexus. Altogether, these findings suggest NOS-II to be exclusively involved during early steps of enteric nervous system development. Absence of downstream signalling elements, such as sGC and cGMP both in neurons and in enteric muscle until the end of the second third of gestation, may indicate different effects executed by NO during development, expressed by Ca2+ -dependent and Ca2+ -independent NOS isoforms.  相似文献   

8.
Nitric oxide is proangiogenic in the retina and choroid   总被引:7,自引:0,他引:7  
Nitric oxide (NO) has been shown to have proangiogenic or antiangiogenic effects depending upon the setting. In this study, we used mice with targeted deletion of one of the three isoforms of nitric oxide synthase (NOS) to investigate the effects of NO in ocular neovascularization. In transgenic mice with increased expression of vascular endothelial growth factor (VEGF) in photoreceptors, deficiency of any of the three isoforms caused a significant decrease in subretinal neovascularization, but no alteration of VEGF expression. In mice with laser-induced rupture of Bruch's membrane, deficiency of inducible NOS (iNOS) or neuronal NOS (nNOS), but not endothelial NOS (eNOS), caused a significant decrease in choroidal neovascularization. In mice with oxygen-induced ischemic retinopathy, deficiency of eNOS, but not iNOS or nNOS caused a significant decrease in retinal neovascularization and decreased expression of VEGF. These data suggest that NO contributes to both retinal and choroidal neovascularization and that different isoforms of NOS are involved in different settings and different disease processes. A broad spectrum NOS inhibitor may have therapeutic potential for treatment of both retinal and choroidal neovascularization.  相似文献   

9.
Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthases (NOS). The NOS/NO system appears to be involved in oocyte maturation, but there are few studies on gene expression and protein activity in oocytes of cattle. The present study aimed to investigate gene expression and protein activity of NOS in immature and in vitro matured oocytes of cattle. The influence of pre-maturation culture with butyrolactone I in NOS gene expression was also assessed. The following experiments were performed: (1) detection of the endothelial (eNOS) and inducible (iNOS) isoforms in the ovary by immunohistochemistry; (2) detection of eNOS and iNOS in the oocytes before and after in vitro maturation (IVM) by immunofluorescence; (3) eNOS and iNOS mRNA and protein in immature and in vitro matured oocytes, with or without pre-maturation, by real time PCR and Western blotting, respectively; and (4) NOS activity in immature and in vitro matured oocytes by NADPH-diaphorase. eNOS and iNOS were detected in oocytes within all follicle categories (primary, secondary and tertiary), and other compartments of the ovary and in the cytoplasm of immature and in vitro matured oocytes. Amount of mRNA for both isoforms decreased after IVM, but was maintained after pre-maturation culture. The NOS protein was detected in immature (pre-mature or not) and was still detected in similar amount after pre-maturation and maturation for both isoforms. NOS activity was detected only in part of the immature oocytes. In conclusion, isoforms of NOS (eNOS and iNOS) are present in oocytes of cattle from early folliculogenesis up to maturation; in vitro maturation influences amount of mRNA and NOS activity.  相似文献   

10.
Nitric oxide (NO), which is produced from l-arginine by three isoforms of NO synthase (NOS), has been implicated in reproductive functions. However, the specific role of NOS isoforms in gamete function and fertilization is not clear. Three types of NOS knockout mice were super ovulated and fertilized in vitro and in vivo. The sperm count and motility, in vivo and in vitro fertilization rate as indicated by two-cell embryos and blastocyst rate were examined. The sperm count and motility from all three knockout mice were not significantly different from that of the wild type. Inducible NOS (iNOS) knockout mice were found to have the largest number of two-cell embryos/mouse collected after fertilization in vivo (P<0.01), but the rate of blastocyst formation from two-cell embryos in vitro was similar for all three knockouts. The rate of in vitro fertilization using either iNOS-deficient sperm or oocytes, but not those deficient in the other two NOS isoforms, was significantly elevated when compared to that in the wild type (P<0.001). While all three types of NOS do not seem to play a significant role in pre-ejaculated sperm function, iNOS may play an inhibitory role in sperm and oocyte functions affecting the process of fertilization and early embryo development.  相似文献   

11.
Nitric oxide (NO*) is produced endogenously from NOS isoforms bound to sarcolemmal (SL) and sarcoplasmic reticulum (SR) membranes. To investigate whether locally generated NO* directly affects the activity of enzymes mediating ion active transport, we studied whether knockout of selected NOS isoforms would affect the functions of cardiac SL (Na+ + K+)-ATPase and SR Ca2+-ATPase. Cardiac SL and SR vesicles containing either SL (Na+ + K+)-ATPase or SR Ca2+-ATPase were isolated from mice lacking either nNOS or eNOS, or both, and tested for enzyme activities. Western blot analysis revealed that absence of single or double NOS isoforms did not interrupt the protein expression of SL (Na+ + K+)-ATPase and SR Ca2+-ATPase in cardiac muscle cells. However, lack of NOS isoforms in cardiac muscle significantly altered both (Na+ + K+)-ATPase activity and SR Ca2+-ATPase function. Our experimental results suggest that disrupted endogenous NO* production may change local redox conditions and lead to an unbalanced free radical homeostasis in cardiac muscle cells which, in turn, may affect key enzyme activities and membrane ion active transport systems in the heart.  相似文献   

12.
The involvement of nitric oxide (NO) as both pro and anti-inflammatory agent in allergic, airway inflammatory, and asthmatic diseases and the active participation of eosinophils in such ailments have been previously suggested. NO modulates eosinophil number, migration and their survival. The microenvironment of NO synthase (NOS) in subcellular organelles determines its rate and efficiency of catalysis, which in turn influences NO generation at distinct intracellular locales. The present study was undertaken to assess the intracellular distribution of NOS isoforms by transmission electron microscopy followed by morphometric analysis in human and rat eosinophils. Rat eosinophils were explored in parallel, and since they are widely used as model systems to mimic human diseases, a comparative study on NOS localization patterns might provide useful information in deciphering NO role in diverse aspects of eosinophil-related inflammatory ailments. The results demonstrated predominance of neuronal NOS (nNOS) in the eosinophilic granules and even distribution of inducible NOS (iNOS) and nNOS in the cytoplasm and nucleus of human eosinophils. In rat eosinophils, however, iNOS was mainly localized in the eosinophilic granules and nucleus, while nNOS was distributed evenly in cytoplasm and nucleus. Distribution of endothelial NOS (eNOS) in eosinophils was scanty. Differences in NOS isoforms and their localization in human and rat cells might have implications in differential mode of catalysis and functional contribution to eosinophil physiology and pathology, warranting detailed investigations. The present study highlights species-specific differences in the relative abundance and distribution pattern of NOS isoforms in rat and human eosinophils, which should be considered cautiously in interpreting the rat data to humans.  相似文献   

13.
14.
This study investigated the effects of intermittent pneumatic compression (IPC) on expression of nitric oxide synthase (NOS) isoforms in compressed (anterior tibialis, AT) and uncompressed (cremaster muscles, CM) skeletal muscles. Following IPC application of 0.5, 1, and 5h on both legs of rats, the endothelial NOS (eNOS) mRNA expression was significantly up-regulated to 1.2-, 1.8, and 2.7-fold from normal, respectively, in both AT and CM, and protein expression increased more than 1.5-fold of normal at each time point. Similarly, neuronal NOS expression was up-regulated, but to a lesser degree. In contrast, inducible NOS expression was significantly and time-dependently down-regulated in both muscles. After IPC cessation, eNOS levels returned to normal in both AT and CM. The results confirm our hypothesis that IPC-induced vasodilation is mediated by regulating expression of NOS isoforms, in particular eNOS, in both compressed and uncompressed skeletal muscles. The results also suggest the importance of precisely characterizing expression of each NOS isoform in tissue pathophysiology.  相似文献   

15.
A series of isomeric methoxyindazoles has been evaluated as inhibitors of purified recombinant neuronal, inducible, and endothelial nitric oxide synthases (NOS). 7-Methoxyindazole (7-MI) was the most active compound of this series and displayed selectivity toward the constitutive neuronal (NOS I) and endothelial (NOS III) NOS isoforms, the inducible NOS II being almost insensitive to this inhibitor. 6-, 5-, and 4-Methoxyindazoles were almost inactive against all three NOS isoforms. Inhibition of NO and citrulline formation catalyzed by neuronal NOS in the presence of 7-MI appeared to be competitive versus both substrate L-arginine (L-arg) and (6R)-5,6,7,8-tetrahydrobiopterin (BH(4)) cofactor. 7-MI only slightly inhibited NADPH oxidase activity and was inactive against the cytochrome c (cyt c) reductase activity of neuronal NOS at concentrations up to 100-fold higher than its IC(50) value for inhibition of citrulline formation. UV/Vis and EPR studies indicated that 7-MI interacts with the oxygenase domain of neuronal NOS (NOS I(oxy)) in an identical manner but with a much lower affinity than 7-nitroindazole (7-NI). These results demonstrate that an indazole derivative bearing an electron-rich substituent in the 7-position is also a NOS I inhibitor and that such a compound presents strong similarities with the mechanism of inhibition of 7-NI.  相似文献   

16.
The intracellular localization and activity of the nitric oxide synthase (NOS) isoforms were investigated in rat brown adipocytes. Immunohistochemistry showed cytoplasmic and nuclear staining for the endothelial NOS (eNOS) and inducible NOS (iNOS) isoforms; accordingly, anti-L-citrulline antibody, a marker of NOS activity, immunostained both the cytoplasm and the nucleus. The presence of metabolically active NOS in the nucleus was further confirmed by immunoblotting analyses of subcellular fractions of homogenates from cultured brown adipocytes and by measurements of NOS activity in the cytosol and nucleus. Sympathetic stimulation in vivo (i.e. cold exposure or beta(3)-adrenergic agonist treatment) and in vitro (i.e. noradrenaline treatment of cultured cells) significantly increased both cytosolic and nuclear eNOS and iNOS expression and activities. By contrast, the number of iNOS-positive, but not eNOS-positive, nuclei was significantly lower in the functionally impaired brown fat of genetically obese Zucker fa/fa rats. These data suggest the existence of a noradrenaline-modulated functional NOS system in the nucleus of brown adipocytes.  相似文献   

17.
Nitric oxide (NO) is implicated in a wide variety of biological roles. NO is generated from three nitric oxide synthase (NOS) isoforms: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) all of which are found in the lung. While there are no isoform-specific inhibitors of NOS, the recent development and characterization of mice deficient in each of the NOS isoforms has allowed for more comprehensive study of the importance of NO in the lung circulation. Studies in the mouse have identified the role of NO from eNOS in modulating pulmonary vascular tone and in attenuating the development of chronic hypoxic pulmonary hypertension.  相似文献   

18.
Nitric oxide (NO) is a janus faced chemical messenger, which, in the recent years, has been the focus of neurobiologists for its involvement in neurodegenerative disorders in particular, Parkinson's disease (PD). Nitric oxide synthase, the key enzyme involved in NO production exists in three known isoforms. The neuronal and inducible isoforms have been implicated in the pathogenesis of PD. These enzymes are subject to complex expressional and functional regulation involving mRNA diversity, phosphorylation and protein interaction. In the recent years, mRNA diversity and polymorphisms have been identified in the NOS isoforms. Some of these genetic variations have been associated with PD, indicating an etiological role for the NOS genes. This review mainly focuses on the NOS genes - their differential regulation and genetic heterogeneity, highlighting their significance in the pathobiology of PD.  相似文献   

19.
BackgroundThe functional role of nitric oxide (NO) and various nitric oxide synthase (NOS) isoforms in asthma remains unclear.ObjectiveThis study investigated the effects of ozone and ovalbumin (OVA) exposure on NOS isoforms.MethodsThe expression of inducible NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS (eNOS) in lung tissue was measured. Enhanced pause (Penh) was measured as a marker of airway obstruction. Nitrate and nitrite in bronchoalveolar lavage (BAL) fluid were measured using a modified Griess reaction.ResultsThe nitrate concentration in BAL fluid from the OVA-sensitized/ozone-exposed/OVA-challenged group was greater than that of the OVA-sensitized/saline-challenged group. Methacholine-induced Penh was increased in the OVA-sensitized/ozone-exposed/OVA-challenged group, with a shift in the dose-response curve to the left, compared with the OVA-sensitized/saline-challenged group. The levels of nNOS and eNOS were increased significantly in the OVA-sensitized/ozone-exposed/OVA-challenged group and the iNOS levels were reduced compared with the OVA-sensitized/saline-challenged group.ConclusionIn mice, ozone is associated with increases in lung eNOS and nNOS, and decreases in iNOS. None of these enzymes are further affected by allergens, suggesting that the NOS isoforms play different roles in airway inflammation after ozone exposure.  相似文献   

20.
目的:研究丹参注射液(SM)对庆大霉素(GM)耳中毒豚鼠耳蜗一氧化氮合酶(NOS)异构体表达的影响,探讨SM对GM耳毒性的防护机制。方法:40只豚鼠随机分成对照组、GM组、SM组和GM+SM组,应用SABC免疫组织化学方法及显微图像分析技术,观察NOS三型异构体在豚鼠耳蜗的表达;同时结合听脑干反应(ABR)测试,观察用药前后豚鼠听阈的变化。结果:GM+SM组豚鼠耳蜗诱导型NOS(iNOS/NOSⅡ)表达和ABR阈值均明显低于GM组(P〈0.01);且iNOS表达变化与ABR阈值改变高度相关(|r|〉0.7,P〈0.01);而各组豚鼠耳蜗神经元型NOS(nNOS/NOSⅠ)和内皮型NOS(eNOS/NOSⅢ)表达均无显著性差异。结论:SM对GM耳中毒后豚鼠耳蜗nNOS和eNOS表达无影响,但可通过抑制GM所致iNOS高表达,以减少NO的过量生成,从而对GM的耳毒性损伤发挥防护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号