首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fatty acid transport protein 4 (FATP4) is an integral membrane protein expressed in the plasma and internal membranes of the small intestine and adipocyte as well as in the brain, kidney, liver, skin, and heart. FATP4 has been hypothesized to be bifunctional, exhibiting both fatty acid transport and acyl-CoA synthetase activities that work in concert to mediate fatty acid influx across biological membranes. To determine whether FATP4 is an acyl-CoA synthetase, the murine protein was engineered to contain a C-terminal FLAG epitope tag, expressed in COS1 cells via adenovirus-mediated infection and purified to near homogeneity using alpha-FLAG affinity chromatography. Kinetic analysis of the enzyme was carried out for long chain (palmitic acid, C16:0) and very long chain (lignoceric acid, C24:0) fatty acids as well as for ATP and CoA. FATP4 exhibited substrate specificity for C16:0 and C24:0 fatty acids with a V(max)/K(m) (C16:0)/V(max)/K(m) (C24:0) of 1.5. Like purified FATP1, FATP4 was insensitive to inhibition by triacsin C but was sensitive to feedback inhibition by acyl-CoA. Although purified FATP4 exhibited high levels of palmitoyl-CoA and lignoceroyl-CoA synthetase activity, extracts from the skin and intestine of FATP4 null mice exhibited reduced esterification for C24:0, but not C16:0 or C18:1, suggesting that in vivo, defects in very long chain fatty acid uptake may underlie the skin disorder phenotype of null mice.  相似文献   

2.
3.
The fatty acid transport protein Fat1p functions as a component of the long-chain fatty acid transport apparatus in the yeast Saccharomyces cerevisiae. Fat1p has significant homologies to the mammalian fatty acid transport proteins (FATP) and the very long-chain acyl-CoA synthetases (VLACS). In order to further understand the functional roles intrinsic to Fat1p (fatty acid transport and VLACS activities), a series of 16 alleles carrying site-directed mutations within FAT1 were constructed and analyzed. Sites chosen for the construction of amino acid substitutions were based on conservation between Fat1p and the mammalian FATP orthologues and included the ATP/AMP and FATP/VLACS signature motifs. Centromeric and 2 mu plasmids encoding mutant forms of Fat1p were transformed into a yeast strain containing a deletion in FAT1 (fat1Delta). For selected subsets of FAT1 mutant alleles, we observed differences between the wild type and mutants in 1) growth rates when fatty acid synthase was inhibited with 45 microm cerulenin in the presence of 100 microm oleate (C(18:1)), 2) levels of fatty acid import monitored using the accumulation of the fluorescent fatty acid 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-S-indacene-3-dodecanoic acid and [(3)H]oleate, 3) levels of lignoceryl (C(24:0)) CoA synthetase activities, and 4) fatty acid profiles monitored using gas chromatography/mass spectrometry. In most cases, there was a correlation between growth on fatty acid/cerulenin plates, the levels of fatty acid accumulation, very long-chain fatty acyl-CoA synthetase activities, and the fatty acid profiles in the different FAT1 mutants. For several notable exceptions, the fatty acid transport and very long-chain fatty acyl-CoA synthetase activities were distinguishable. The characterization of these novel mutants provides a platform to more completely understand the role of Fat1p in the linkage between fatty acid import and activation to CoA thioesters.  相似文献   

4.
J Knudsen  S Clark    R Dils 《The Biochemical journal》1976,160(3):683-691
1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000+/-500 (mean+/-S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.  相似文献   

5.
The fluorescence-based long-chain fatty acid probe BSA-HCA (bovine serum albumin labeled with 7-hydroxycoumarin-4-acetic acid) is shown to respond to binding of long-chain acyl-CoA thioesters by quenching of the 450 nm fluorescence emission. As determined by spectrofluorometric titration, binding affinities for palmitoyl-, stearoyl-, and oleoyl-CoA (Kd = 0.2-0.4 microM) are 5-10 times lower than those for the corresponding nonesterified fatty acids. In the presence of detergent (Chaps, Triton X-100, n-octylglucoside) above the critical micelle concentration, acyl-CoA partitions from BSA-HCA and into the detergent micelles. This allows BSA-HCA to be used as a fluorescent probe for continuous recording of fatty acid concentrations in detergent solution with little interference from acyl-CoA. Using a calibration of the fluorescence signal with fatty acids in the C14 to C20 chain-length range, fatty acid consumption by Pseudomonas fragi and rat liver microsomal acyl-CoA synthetase activities are measured down to 0.05 microM/min with a data sampling rate of 10 points per second. This new method provides a very promising spectrofluorometric approach to the study of acyl-CoA synthetase reaction kinetics at physiologically relevant (nM) aqueous phase concentrations of fatty acid substrates and at a time resolution that cannot be obtained in isotopic sampling or enzyme-coupled assays.  相似文献   

6.
Fatty acid transport protein 4 (FATP4) is a fatty acyl-CoA synthetase that preferentially activates very long chain fatty acid substrates, such as C24:0, to their CoA derivatives. To gain better insight into the physiological functions of FATP4, we established dermal fibroblast cell lines from FATP4-deficient wrinkle-free mice and wild type (w.t.) mice. FATP4 -/- fibroblasts had no detectable FATP4 protein by Western blot. Compared with w.t. fibroblasts, cells lacking FATP4 had an 83% decrease in C24:0 activation. Peroxisomal degradation of C24:0 was reduced by 58%, and rates of C24:0 incorporation into major phospholipid species (54-64% decrease), triacylglycerol (64% decrease), and cholesterol esters (58% decrease) were significantly diminished. Because these lipid metabolic processes take place in different subcellular organelles, we used immunofluorescence and Western blotting of subcellular fractions to investigate the distribution of FATP4 protein and measured enzyme activity in fractions from w.t. and FATP4 -/- fibroblasts. FATP4 protein and acyl-CoA synthetase activity localized to multiple organelles, including mitochondria, peroxisomes, endoplasmic reticulum, and the mitochondria-associated membrane fraction. We conclude that in murine skin fibroblasts, FATP4 is the major enzyme producing very long chain fatty acid-CoA for lipid metabolic pathways. Although FATP4 deficiency primarily affected very long chain fatty acid metabolism, mutant fibroblasts also showed reduced uptake of a fluorescent long chain fatty acid and reduced levels of long chain polyunsaturated fatty acids. FATP4-deficient cells also contained abnormal neutral lipid droplets. These additional defects indicate that metabolic abnormalities in these cells are not limited to very long chain fatty acids.  相似文献   

7.
The primary sequence of the murine fatty acid transport protein (FATP1) is very similar to the multigene family of very long chain (C20-C26) acyl-CoA synthetases. To determine if FATP1 is a long chain acyl coenzyme A synthetase, FATP1-Myc/His fusion protein was expressed in COS1 cells, and its enzymatic activity was analyzed. In addition, mutations were generated in two domains conserved in acyl-CoA synthetases: a 6- amino acid substitution into the putative active site (amino acids 249-254) generating mutant M1 and a 59-amino acid deletion into a conserved C-terminal domain (amino acids 464-523) generating mutant M2. Immunolocalization revealed that the FATP1-Myc/His forms were distributed between the COS1 cell plasma membrane and intracellular membranes. COS1 cells expressing wild type FATP1-Myc/His exhibited a 3-fold increase in the ratio of lignoceroyl-CoA synthetase activity (C24:0) to palmitoyl-CoA synthetase activity (C16:0), characteristic of very long chain acyl-CoA synthetases, whereas both mutant M1 and M2 were catalytically inactive. Detergent-solubilized FATP1-Myc/His was partially purified using nickel-based affinity chromatography and demonstrated a 10-fold increase in very long chain acyl-CoA specific activity (C24:0/C16:0). These results indicate that FATP1 is a very long chain acyl-CoA synthetase and suggest that a potential mechanism for facilitating mammalian fatty acid uptake is via esterification coupled influx.  相似文献   

8.
The enzymes for beta-oxidation of fatty acids in inducible and constitutive strains of Escherichia coli were assayed in soluble and membrane fractions of disrupted cells by using fatty acid and acyl-coenzyme A (CoA) substrates containing either 4 or 16 carbon atoms in the acyl moieties. Cell fractionation was monitored, using succinic dehydrogenase as a membrane marker and glucose 6-phosphate dehydrogenase as a soluble marker. Acyl-CoA synthetase activity was detected exclusively in the membrane fraction, whereas acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities that utilized both C4 and C16 acyl-CoA substrates were isolated from the soluble fraction. 3-Hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities assayed with both C4 and C16 acyl-CoA substrates co-chromatographed on gel filtration and ion-exchange columns and cosedimented in glycerol gradients. The data show that these three enzyme activities of the fad regulon can be isolated as a multienzyme complex. This complex dissociates in very dilute preparations; however, in those preparations where the three activities are separated, the fractionated species retain activity with both C4 and C16 acyl-CoA substrates.  相似文献   

9.
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of very long-chain fatty acids. This has led to controversy as to whether these proteins function as membrane-bound fatty acid transporters or as acyl-CoA synthetases, which activate long-chain fatty acids concomitant with transport. The yeast FATP orthologue, Fat1p, is a dual functional protein and is required for both the import of long-chain fatty acids and the activation of very long-chain fatty acids; these activities intrinsic to Fat1p are separable functions. To more precisely define the roles of the different mammalian isoforms in fatty acid trafficking, the six murine proteins (mmFATP1-6) were expressed and characterized in a genetically defined yeast strain, which cannot transport long-chain fatty acids and has reduced long-chain acyl-CoA synthetase activity (fat1Delta faa1Delta). Each isoform was evaluated for fatty acid transport, fatty acid activation (using C18:1, C20:4, and C24:0 as substrates), and accumulation of very long-chain fatty acids. Murine FATP1, -2, and -4 complemented the defects in fatty acid transport and very long-chain fatty acid activation associated with a deletion of the yeast FAT1 gene; mmFATP3, -5, and -6 did not complement the transport function even though each was localized to the yeast plasma membrane. Both mmFATP3 and -6 activated C20:4 and C20:4, while the expression of mmFATP5 did not substantially increase acyl-CoA synthetases activities using the substrates tested. These data support the conclusion that the different mmFATP isoforms play unique roles in fatty acid trafficking, including the transport of exogenous long-chain fatty acids.  相似文献   

10.
The family of proteins that includes very long-chain acyl-CoA synthetases (ACSVL) consists of six members. These enzymes have also been designated fatty acid transport proteins. We cloned full-length mouse Acsvl3 cDNA and characterized its protein product ACSVL3/fatty acid transport protein 3. The predicted amino acid sequence contains two highly conserved motifs characteristic of acyl-CoA synthetases. Northern blot analysis revealed that the mouse Acsvl3 mRNA is highly expressed in adrenal gland, testis, and ovary, with lower expression in the brain of adult mice. A developmental Northern blot revealed that Acsvl3 mRNA levels were significantly higher in embryonic mouse brain (embryonic days 12-14) than in newborn or adult mice, suggesting a possible role in nervous system development. Immunohistochemistry revealed high ACSVL3 expression in adrenal cortical cells, spermatocytes and interstitial cells of the testis, theca cells of the ovary, cerebral cortical neurons, and cerebellar Purkinje cells. Endogenous ACSVL3 was found primarily in mitochondria of MA-10 and Neuro2a cells by both Western blot analysis of subcellular fractions and immunofluorescence analysis. In MA-10 cells, loss-of-function studies using RNA interference confirmed that endogenous ACSVL3 is an acyl-CoA synthetase capable of activating both long-chain (C16:0) and very long-chain (C24:0) fatty acids. However, despite decreased acyl-CoA synthetase activity, initial rates of fatty acid uptake were unaffected by knockdown of Acsvl3 expression in MA-10 cells. These studies cast doubt on the designation of ACSVL3 as a fatty acid transport protein.  相似文献   

11.
The function of membrane proteins in long-chain fatty acid transport is controversial. The acyl-CoA synthetase fatty acid transport protein-4 (FATP4) has been suggested to facilitate fatty acid uptake indirectly by its enzymatic activity, or directly by transport across the plasma membrane. Here, we investigated the function of FATP4 in basal and insulin mediated fatty acid uptake in C(2)C(12) muscle cells, a model system relevant for fatty acid metabolism. Stable expression of exogenous FATP4 resulted in a twofold higher fatty acyl-CoA synthetase activity, and cellular uptake of oleate was enhanced similarly. Kinetic analysis demonstrated that FATP4 allowed the cells to reach apparent saturation of fatty acid uptake at a twofold higher level compared with control. Short-term treatment with insulin increased fatty acid uptake in line with previous reports. Surprisingly, insulin increased the acyl-CoA synthetase activity of C(2)C(12) cells within minutes. This effect was sensitive to inhibition of insulin signaling by wortmannin. Affinity purified FATP4 prepared from insulin-treated cells showed an enhanced enzyme activity, suggesting it constitutes a novel target of short-term metabolic regulation by insulin. This offers a new mechanistic explanation for the concomitantly observed enhanced fatty acid uptake. FATP4 was colocalized to the endoplasmic reticulum by double immunofluorescence and subcellular fractionation, clearly distinct from the plasma membrane. Importantly, neither differentiation into myotubes nor insulin treatment changed the localization of FATP4. We conclude that FATP4 functions by its intrinsic enzymatic activity. This is in line with the concept that intracellular metabolism plays a significant role in cellular fatty acid uptake.  相似文献   

12.
Fatty acid transport protein 1 (FATP1) is an approximately 63-kDa plasma membrane protein that facilitates the influx of fatty acids into adipocytes as well as skeletal and cardiac myocytes. Previous studies with FATP1 expressed in COS1 cell extracts suggested that FATP1 exhibits very long chain acyl-CoA synthetase (ACS) activity and that such activity may be linked to fatty acid transport. To address the enzymatic activity of the isolated protein, murine FATP1 and ACS1 were engineered to contain a C-terminal Myc-His tag expressed in COS1 cells via adenoviral-mediated infection and purified to homogeneity using nickel affinity chromatography. Kinetic analysis of the purified enzymes was carried out for long chain palmitic acid (C16:0) and very long chain lignoceric acid (C24:0) as well as for ATP and CoA. FATP1 exhibited similar substrate specificity for fatty acids 16-24 carbons in length, whereas ACS1 was 10-fold more active on long chain fatty acids relative to very long chain fatty acids. The very long chain acyl-CoA synthetase activity of the two enzymes was comparable as were the Km values for both ATP and coenzyme A. Interestingly, FATP1 was insensitive to inhibition by triacsin C, whereas ACS1 was inhibited by micromolar concentrations of the compound. These data represent the first characterization of purified FATP1 and indicate that the enzyme is a broad substrate specificity acyl-CoA synthetase. These findings are consistent with the hypothesis that that fatty acid uptake into cells is linked to their esterification with coenzyme A.  相似文献   

13.
Jiang Y  Chan CH  Cronan JE 《Biochemistry》2006,45(33):10008-10019
The gene encoding the unique soluble acyl-acyl carrier protein synthetase (AasS) of the bioluminescent Vibrio harveyi strain B392 has been isolated by expression cloning in Escherichia coli.This enzyme catalyzes the ATP-dependent acylation of the thiol of acyl carrier protein (ACP) with fatty acids with chain lengths from C4 to C18. The gene (called aasS) encodes a protein of 60 kDa, a hexahistidine-tagged version of which was readily expressed in E. coli and purified in large quantities. Surprisingly, the sequence of the encoded protein was significantly more similar to that of an acyl-CoA synthetase of the distantly related bacterium, Thermus thermophilus, than to that of the membrane-bound acyl-acyl carrier protein synthetase of E. coli, an enzyme that catalyzes the same reaction from a more closely related organism. Indeed, the AasS sequence can readily be modeled on the known crystal structures of the T. thermophilus acyl-CoA synthetase with remarkably high levels of conservation of the catalytic site residues. To test the possible role of AasS in the fatty aldehyde-dependent bioluminescence pathway of V. harveyi, the chromosomal aasS gene of the organism was disrupted by insertion of a kanamycin cassette by homologous recombination. The resulting aasS::kan strains retained low levels of acyl-acyl carrier protein synthetase consistent with prior indications of a second such activity in this bacterium. The mutant strains grew normally and had normal levels of bioluminescence but were deficient in the incorporation of exogenous octanoic acid into the cellular phospholipids of V. harveyi, particularly at low octanoate concentrations. These data indicate that AasS is responsible for a high-affinity and high-capacity uptake system that efficiently converts exogenous fatty acids into acyl-ACP species competent to enter the fatty acid biosynthetic cycle.  相似文献   

14.
In higher plants, fat-storing seeds utilize storage lipids as a source of energy during germination. To enter the beta-oxidation pathway, fatty acids need to be activated to acyl-coenzyme As (CoAs) by the enzyme acyl-CoA synthetase (ACS; EC 6.2.1.3). Here, we report the characterization of an Arabidopsis cDNA clone encoding for a glyoxysomal acyl-CoA synthetase designated AtLACS6. The cDNA sequence is 2,106 bp long and it encodes a polypeptide of 701 amino acids with a calculated molecular mass of 76,617 D. Analysis of the amino-terminal sequence indicates that acyl-CoA synthetase is synthesized as a larger precursor containing a cleavable amino-terminal presequence so that the mature polypeptide size is 663 amino acids. The presequence shows high similarity to the typical PTS2 (peroxisomal targeting signal 2). The AtLACS6 also shows high amino acid identity to prokaryotic and eukaryotic fatty acyl-CoA synthetases. Immunocytochemical and cell fractionation analyses indicated that the AtLACS6 is localized on glyoxysomal membranes. AtLACS6 was overexpressed in insect cells and purified to near homogeneity. The purified enzyme is particularly active on long-chain fatty acids (C16:0). Results from immunoblot analysis revealed that the expression of both AtLACS6 and beta-oxidation enzymes coincide with fatty acid degradation. These data suggested that AtLACS6 might play a regulatory role both in fatty acid import into glyoxysomes by making a complex with other factors, e.g. PMP70, and in fatty acid beta-oxidation activating the fatty acids.  相似文献   

15.
Triacsins A, B, C, and D are newly discovered compounds isolated from the culture filtrate of streptomyces which are known to inhibit nonspecific long chain acyl-CoA synthetase (EC 6.2.1.3.). These inhibitors have not been previously studied with regard to their effects on arachidonoyl-CoA synthetase, an enzyme which specifically utilizes arachidonate and other icosanoid precursor fatty acids. To explore this question, we used triacsin C, a potent inhibitor of the nonspecific acyl-CoA synthetase. Triacsin C was found to inhibit the action of arachidonoyl-CoA synthetase and the nonspecific enzyme in sonicates of HSDM1C1 mouse fibrosarcoma cells. Importantly, however, the triacsin concentration and length of pre-incubation with the enzymes could be adjusted to almost completely inhibit (greater than 80%) the nonspecific long chain acyl CoA-synthetase, with less than 20% inhibition of arachidonoyl-CoA synthetase. Using intact cultured cells exposed to 1 ug/ml triacsin for up to 15 minutes, we unexpectedly observed preferential inhibition of arachidonoyl-CoA synthetase activity. In intact cell studies, arachidonoyl-CoA synthetase was inhibited greater than 90%, with 55-60% inhibition of the nonspecific acyl-CoA synthetase. As additional evidence of its inhibition of acyl-CoA synthetase enzymes in intact cells, triacsin C inhibited both fatty acid uptake into cells and icosanoid production, metabolic processes which in certain cell types appear to be dependent on acyl-CoA synthetase activity. Thus, triacsin C is a novel inhibitor which can alter the fatty metabolism of intact cells. This compound can be of significant value in determining the specific cellular functions of the two acyl-CoA synthetase enzymes.  相似文献   

16.
Synthesis of Long-Chain Acyl-CoA in Chloroplast Envelope Membranes   总被引:6,自引:5,他引:1       下载免费PDF全文
The chloroplast envelope is the site of a very active long-chain acylcoenzyme A (CoA) synthetase. Furthermore, we have recently shown that an acyl CoA thioesterase is also associated with envelope membrane (Joyard J, PK Stumpf 1980 Plant Physiol 65: 1039-1043). To clarify the interacting roles of both the acyl-CoA thioesterase and the acyl-CoA synthetase, the formation of acyl-CoA in envelope membranes was examined with different techniques which permitted the measurement of the actual rates of acyl-CoA formation. Using [14C]ATP or [14C]oleic acid as labeled substrates, it can be shown that the envelope acyl-CoA synthetase required both Mg2+ and dithiothreitol. Triton X-100 slightly stimulated the activity. The specificity of the acyl-CoA synthetase was determined either with [14C]ATP or with [3H]CoA as substrates. The results obtained in both cases were similar, that is, as substrates, the unsaturated fatty acids were more effective than saturated fatty acids, the velocity of the reaction increased from lauric acid to palmitic acid, and the maximum velocity was obtained with unsaturated C18 fatty acids.  相似文献   

17.
Fatty acyl-CoA synthetase, the first enzyme of the beta-oxidation pathway, has been proposed to be involved in long chain fatty acid translocation across the plasma membrane of prokaryotic and eukaryotic cells. To test this proposal, we used an in vitro system consisting of Escherichia coli inner (plasma) membrane vesicles containing differing amounts of trapped fatty acyl-CoA synthetase and its substrates CoA and ATP. This system allowed us to investigate the involvement of fatty acyl-CoA synthetase independently of other proteins that are involved in fatty acid translocation across the outer membrane and in downstream steps in beta-oxidation, because these proteins are not retained in the inner membrane vesicles. Fatty acid uptake in vesicles containing fatty acyl-CoA synthetase was dependent on the amount of exogenous ATP and CoASH trapped by freeze-thawing. The uptake of fatty acid in the presence of non-limiting amounts of ATP and CoASH was dependent on the amount of endogenous fatty acyl-CoA synthetase either retained within vesicles during isolation or trapped within vesicles after isolation by freeze-thawing. Moreover, the fatty acid taken up by the vesicles was converted to fatty acyl-CoA. These data are consistent with the proposal that fatty acyl-CoA synthetase facilitates long chain fatty acid permeation of the inner membrane by a vectorial thioesterification mechanism.  相似文献   

18.
FATP4 (SLC27A4) is a member of the fatty acid transport protein (FATP) family, a group of evolutionarily conserved proteins that are involved in cellular uptake and metabolism of long and very long chain fatty acids. We cloned and characterized the murine FATP4 gene and its cDNA. From database analysis we identified the human FATP4 genomic sequence. The FATP4 gene was assigned to mouse chromosome 2 band B, syntenic to the region 9q34 encompassing the human gene. The open reading frame was determined to be 1929 bp in length, encoding a polypeptide of 643 amino acids. Within the coding region, the exon-intron structures of the murine FATP4 gene and its human counterpart are identical, revealing a high similarity to the FATP1 gene. The overall amino acid identity between the deduced murine and human FATP4 polypeptides is 92.2%, and between the murine FATP1 and FATP4 polypeptides is 60.3%. Northern analysis showed that FATP4 mRNA was expressed most abundantly in small intestine, brain, kidney, liver, skin and heart. Transfection of FATP4 cDNA into COS1 cells resulted in a 2-fold increase in palmitoyl-CoA synthetase (C16:0) and a 5-fold increase in lignoceroyl-CoA synthetase (C24:0) activity from membrane extracts, indicating that the FATP4 gene encodes an acyl-CoA synthetase with substrate specificity biased towards very long chain fatty acids.  相似文献   

19.
Triacsins A,B,C, and D are newly discovered compounds isolated from the culture filtrate of streptomyces which are known to inhibit nonspecific long chain acyl-CoA synthetase (EC 6.2.1.3.). These inhibitors have not been previously studied with regard to their effects on arachidonoyl-CoA synthetase, an enzyme which specifically utilizes arachidonate and other icosanoid precursor fatty acids. To explore his question, we used triacsin C, a potent inhibitor of the nonspecific acyl-CoA synthetase. Triacsin C was found to inhibit the action of arachidonoyl-CoA synthetase and the nonspecific enzyme in sonicates of HSDM1C1 mouse fibrosarcoma cells. Importantly, however, the triacsin concentration and length of pre-incubation with the enzymes could be adjusted to almost completely inhibit (>80%) the nonspecific long chain acyl CoA-synthetase, with less than 20% inhibition of arachidonoyl-CoA synthetase. Using intact cultured cells exposed to 1 ug/ml traicsin for up to 15 minutes, we unexpectedly observed preferential inhibition of arachidonoyl-CoA synthetase activity. In intact cell studies, arachidonoyl-CoA synthetase was inhibited > 90%, with 55–60% inhibition of the nonspecific acyl-CoA synthetase. As additional evidence of its inhibition of acyl-CoA synthetase enzymes in intact cells, triacsin c inhibited both fatty acid uptake into cells and icosanoid production, metabolic processes which in certain cell types appear to be dependent on acyl-CoA synthetase activity. Thus, triacsin C is a novel inhibitor which can alter the fatty metabolism of intact cells. This compound can be of significant value in determining the specific cellular functions of the two acyl-CoA synthetase enzymes.  相似文献   

20.
Short-, medium-, and long-chain fatty acid:CoA ligases from human liver were tested for their sensitivity to inhibition by triacsin C. The short-chain fatty acid:CoA ligase was inhibited less than 10% by concentrations of triacsin C as high as 80 microM. The two mitochondrial xenobiotic/medium-chain fatty acid:CoA ligases (XM-ligases), HXM-A and HXM-B, were partially inhibited by triacsin C, and the inhibitions were characterized by low affinity for triacsin C (K(I) values > 100 microM). These inhibitions were found to be the result of triacsin C competing with medium-chain fatty acid for binding at the active site. The microsomal and mitochondrial forms of long-chain fatty acid:CoA ligase (also termed long-chain fatty acyl-CoA synthetase, or long-chain acyl-CoA synthetase LACS) were potently inhibited by triacsin C, and the inhibition had identical characteristics for both LACS forms. Dixon plots of this inhibition were biphasic. There is a high-affinity site with a K(I) of 0.1 microM that accounts for a maximum of 70% of the inhibition. There is also a low affinity site with a K(I) of 6 microM that accounts for a maximum of 30% inhibition. Kinetic analysis revealed that the high-affinity inhibition of the mitochondrial and microsomal LACS forms is the result of triacsin C binding at the palmitate substrate site.The high-affinity triacsin C inhibition of both the mitochondrial and microsomal LACS forms was found to require a high concentration of free Mg(2+), with the EC(50) for inhibition being 3 mM free Mg(2+). The low affinity triacsin C inhibition was also enhanced by Mg(2+). The data suggests that Mg(2+) promotes triacsin C inhibition of LACS by enhancing binding at the palmitate binding site. In contrast, the partial inhibition of the XM-ligases by triacsin C, which showed only a low-affinity component, did not require Mg(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号