首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reorganization of the cortical cytoskeleton is a hallmark of T lymphocyte activation. Upon binding to antigen presenting cells, the T cells rapidly undergo cytoskeletal re-organization thus forming a cap at the cell-cell contact site leading to receptor clustering, protein segregation, and cellular polarization. Previously, we reported cloning of the human lymphocyte homologue of the Drosophila Discs Large tumor suppressor protein (hDlg). Here we show that a novel protein termed GAKIN binds to the guanylate kinase-like domain of hDlg. Affinity protein purification, peptide sequencing, and cloning of GAKIN cDNA from Jurkat J77 lymphocytes identified GAKIN as a novel member of the kinesin superfamily of motor proteins. GAKIN mRNA is ubiquitously expressed, and the predicted amino acid sequence shares significant sequence similarity with the Drosophila kinesin-73 motor protein. GAKIN sequence contains a motor domain at the NH(2) terminus, a central stalk domain, and a putative microtubule-interacting sequence called the CAP-Gly domain at the COOH terminus. Among the MAGUK superfamily of proteins examined, GAKIN binds to the guanylate kinase-like domain of PSD-95 but not of p55. The hDlg and GAKIN are localized mainly in the cytoplasm of resting T lymphocytes, however, upon CD2 receptor cross-linking the hDlg can translocate to the lymphocyte cap. We propose that the GAKIN-hDlg interaction lays the foundation for a general paradigm of coupling MAGUKs to the microtubule-based cytoskeleton, and that this interaction may be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes in vivo.  相似文献   

2.
DLG, the mammalian homolog of the Drosophila Discs Large suppressor protein, functions as a scaffolding protein that facilitates the transmission of diverse downstream signals. In the present study, we attempted to identify partner proteins for DLG, and found that DLG interacts through its PDZ domains with the ribosome receptor. The ribosome receptor is an integral endoplasmic reticulum protein that has been suggested to be involved in secretion. Our finding raises the possibility that DLG plays a role in the regulation of secretion by interacting with the ribosome receptor.  相似文献   

3.
The human homolog of the Drosophila discs large tumor suppressor protein (hDLG) functions as a scaffolding protein that facilitates the transmission of diverse downstream signals. Here we show that hDLG interacts through its PDZ domains with the carboxy-terminal S/TXV motif of the mitochondrial ribosomal protein S-34 (MRP-S34). Our results suggest that hDLG interacts with MRP-S34 prior to entry of MRP-S34 into the mitochondria and may be involved in the trafficking of MRP-S34.  相似文献   

4.
5.
Multidomain scaffolding proteins are central components of many signaling pathways and are commonly found at membrane specializations. Here we have shown that multiple interdomain interactions in the scaffold Discs Large (Dlg) regulate binding to the synaptic protein GukHolder (GukH). GukH binds the Src homology 3 (SH3) and guanylate kinase-like (GK) protein interaction domains of Dlg, whereas an intramolecular interaction between the two domains inhibits association with GukH. Regulation occurs through a PDZ domain adjacent to the SH3 that allows GukH to interact with the composite SH3-GK binding site, but PDZ ligands inhibit GukH binding such that Dlg forms mutually exclusive PDZ ligand and GukH cellular complexes. The PDZ-SH3-GK module is a common feature of membrane associate guanylate kinase scaffolds such as Dlg, and these results indicate that its supramodular architecture leads to regulation of Dlg complexes.  相似文献   

6.
The mammalian homolog of the Drosophila discs large tumor suppressor protein Dlg functions as a scaffolding protein that facilitates the transmission of diverse signals. In the present study, we attempted to identify the downstream target genes of Dlg, and found that Dlg up-regulates expression of the ELR+ CXC chemokine Scyb5, which has been implicated in the immune system. Our finding suggests that Scyb5 may play an important role in the tumor suppressor function of Dlg.  相似文献   

7.
Membrane-associated guanylate kinase homologues (MAGUKs) are generally found under the plasma membrane of cell-cell contact sites and function as scaffolding proteins by linking cytoskeletal and signaling molecules to transmembrane receptors. The correct targeting of MAGUKs is essential for their receptor-clustering function; however, the molecular mechanism of their intracellular transport is unknown. Here, we show that the guanylate kinase-like domain of human discs large protein binds directly within the amino acids 607-831 of the stalk domain of GAKIN, a kinesin-like protein of broad distribution. The primary structure of the binding segment, termed MAGUK binding stalk domain, is conserved in Drosophila kinesin-73 and some other motor and non-motor proteins. This stalk segment is not found in GKAP, a synaptic protein that interacts with the guanylate kinase-like domain, and unlike GKAP, the binding of GAKIN is not regulated by the intramolecular interactions within the discs large protein. The recombinant motor domain of GAKIN is an active microtubule-stimulated ATPase with k(cat) = 45 s(-1), K(0.5 (MT)) = 0.1 microm. Overexpression of green fluorescent protein-fused GAKIN in Madin-Darby canine kidney epithelial cells induced long projections with both GAKIN and endogenous discs large accumulating at the tip of these projections. Importantly, the accumulation of endogenous discs large was eliminated when a mutant GAKIN lacking its motor domain was overexpressed under similar conditions. Taken together, our results indicate that discs large is a cargo molecule of GAKIN and suggest a mechanism for intracellular trafficking of MAGUK-laden vesicles to specialized membrane sites in mammalian cells.  相似文献   

8.
Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited a similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis.  相似文献   

9.
Mao P  Tao YX  Fukaya M  Tao F  Li D  Watanabe M  Johns RA 《IUBMB life》2008,60(10):684-692
Membrane-associated guanylate kinases (MAGUKs) act as scaffolds to coordinate signaling events through their multiple domains at the plasma membrane. The MAGUK SH3 domain is noncanonical and its function remains unclear. To identify potential binding partners of MAGUK SH3, the synapse-associated protein 102 (SAP102) SH3 domain was used as bait in a yeast two-hybrid screen of a mouse embryonic cDNA library. A mouse homologue of the Drosophila discs large tumor suppressor (Dlg, also known as SAP97) bound preferentially to SAP102 SH3. The 4347bp cDNA sequence encoded an 893 amino acid protein with 94% identity to mouse SAP97. A deleted region (33-aa) strongly suggests this is a novel splice variant, which we call Embryonic-dlg/SAP97 (E-dlg). The interaction of SAP102 and E-dlg was confirmed in mammalian cells. E-dlg can also bind to potassium channel Kv1.4 in a pull-down assay. E-dlg was highly expressed in embryonic and some adult mouse tissues, such as brain, kidney, and ovary. Furthermore, in situ hybridization showed that E-dlg was mostly expressed in olfactory bulb and cerebellum.  相似文献   

10.
《Fly》2013,7(4):294-298
Gamete development requires a coordinated soma-germ line interaction that ensures renewal and differentiation of germline and somatic stem cells. The physical contact between the germline and somatic cell populations is crucial because it allows the exchange of diffusible signals among them. The tumor suppressor gene discs large (dlg) encodes a septate junction protein with functions in epithelial cell polarity, asymmetric neuroblast division, and formation of neuromuscular junctions. Our recent work reveals a new role of dlg in the Drosophila testis, as mutations in dlg lead to testis defects and cell death. Dlg is required throughout spermatogenesis in the somatic lineage and its localization changes from a uniform distribution along the plasma membrane of somatic cells in the testis apex, to a restricted localization on the distally located somatic cell in growing cysts. The extensive defects in dlg testis underline the importance of the somatic cells in the establishment and maintenance of the male stem cell niche and somatic cell differentiation. Here, we discuss our latest findings on the role of dlg in the Drosophila testis, supporting the view that junction proteins are dynamic structures, which can provide guiding cues to recruit scaffold proteins or other signaling molecules.  相似文献   

11.
Here we report the identification of a new insulin-like growth factor binding protein homologue, provisionally designated insulin-like growth factor binding related protein-4 (IGFBP-rP4). IGFBP-rP4 was found to be most closely related to IGFBP-7 with 52% amino acid homology and 43% amino acid identity, and shares a similar domain structure. Semi-quantitative RT-PCR expression analysis demonstrated a pattern of downregulation of this gene in multiple tumor samples including lung and colon cancer, compared to matched adjacent normal tissue. Western blotting revealed a protein of approximately 38kDa expressed in both the cell pellet and secreted into the supernatant of transiently transfected Cos-7 cells. Cos-7 supernatants containing IGFBP-RP4 protein were observed to suppress the growth of HeLa cells in culture compared to vector controls. IGFBP-RP4 directly transiently transfected into HeLa cells also further confirmed the growth suppressive properties of this protein. Together these data suggest that IGFBP-RP4 may be a novel putative tumor suppressor protein.  相似文献   

12.
13.
The correct assembly of junction components, such as E-cadherin and beta-catenin, into the zonula adherens is fundamental for the function of epithelia, both in flies and in vertebrates. In C. elegans, however, the cadherin-catenin system is not essential for general adhesion, raising the question as to the genetic basis controlling junction morphogenesis in nematodes. Here we show that dlg-1, the C. elegans homologue of the Drosophila tumour-suppressor gene discs-large, plays a crucial role in epithelial development. DLG-1 is restricted to adherens junctions of all embryonic epithelia, which contrasts with the localisation of the Drosophila and vertebrate homologues in septate and tight junctions, respectively. Proper localisation of DLG-1 requires the basolateral LET-413 protein, but is independent of the cadherin-catenin system. Embryos in which dlg-1 activity was eliminated by RNA-mediated interference fail to form a continuous belt of junction-associated antigens and arrest development. Loss of dlg-1 activity differentially affects localisation of proteins normally enriched apically to the zonula adherens. While the distribution of an atypical protein kinase C (PKC-3) and other cytoplasmic proteins (PAR-3, PAR-6) is not affected in dlg-1 (RNAi) embryos, the transmembrane protein encoded by crb-1, the C. elegans homologue of Drosophila crumbs, is no longer concentrated in this domain. In contrast to Drosophila, however, crb-1 and a second crb-like gene are not essential for epithelial development in C. elegans. Together the data indicate that several aspects of the spatial organisation of epithelial cells and its genetic control differ between flies, worms, and vertebrates, while others are conserved. The molecular nature of DLG-1 makes it a likely candidate to participate in the organisation of a protein scaffold that controls the assembly of junction components into the zonula adherens.  相似文献   

14.
The discs large (hDlg) tumor suppressor is intimately involved in the control of cell contact, polarity, and proliferation by interacting with several components of the epithelial junctional complex and with the APC tumor suppressor protein. In epithelial cells, hDlg protein stability is regulated through the ubiquitin-proteasome pathway: hDlg is actively degraded in isolated cells, whereas it accumulates upon cell-cell contact. During neoplastic transformation of epithelial cells, loss of the differentiated morphology and progression toward a metastatic phenotype correlate with down-regulation of hDlg levels and loss of contact-dependent stabilization. Here we show that upon hyperphosphorylation, hDlg interacts with the beta-TrCP ubiquitin ligase receptor through a DSGLPS motif within its Src homology 3 domain. As a consequence, overexpression of beta-TrCP enhances ubiquitination of Dlg protein and decreases its stability, whereas a dominant negative beta-TrCP mutant inhibits this process. Furthermore, a mutant Dlg protein that is unable to bind beta-TrCP displays a higher protein stability and is insensitive to beta-TrCP. Using RNA interference, we also demonstrate that endogenous beta-TrCP regulates hDlg protein levels in epithelial cells. Finally, we show that beta-TrCP selectively induces the degradation of the membrane-cytoplasmic pool, without affecting the nuclear pool of hDlg.  相似文献   

15.
The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.  相似文献   

16.
Mammalian Vav signal transducer protein couples tyrosine kinase signals with the activation of the Rho/Rac GTPases, thus leading to cell differentiation and/or proliferation. We have isolated and characterized the DroVav gene, the homologue of hVav in Drosophila melanogaster. DroVav encodes a protein (793 residues) whose similarity with hVav is 47% and with hVav2 and hVav3 is 45%. DroVav preserves the unique, complex structure of hVav proteins, including the 'calponin homology', dbl homology, pleckstrin homology; SH2 and SH3 domains in addition to regions that are acidic rich, proline rich and cysteine rich. DroVav is located on the X chromosome in polytene interval 18A5;18B and is expressed in all stages of development and in all tissues. In mammalian cells, DroVav is tyrosine-phosphorylated in response to epidermal growth factor receptor (EGFR) induction; in vitro, the DroVav SH2 region is associated with tyrosine-phosphorylated EGFR. Thus, DroVav probably plays a pivotal role as a signal transducer protein during fruit fly development.  相似文献   

17.
p120 GTPase-activating protein (GAP) down-regulates Ras by stimulating GTP hydrolysis of active Ras. In addition to its association with Ras, GAP has been shown to bind to several tyrosine-phosphorylated proteins in cells stimulated by growth factors or expressing transforming tyrosine kinase variants. Here we report the cloning and characterization of a novel GAP-binding protein, mTid-1, a DnaJ chaperone protein that represents the murine homolog of the Drosophila tumor suppressor l(2)tid gene. Three alternatively spliced variants of mTid-1 were isolated, two of which correspond to the recently identified hTid-1(L) and hTid-1(S) forms of the human TID1 gene that exhibit opposing effects on apoptosis. We demonstrate that both cytoplasmic precursor and mitochondrial mature forms of mTid-1 associate with GAP in vivo. Interestingly, although mTid-1 is found tyrosine-phosphorylated in v-src-transformed fibroblast cells, GAP selectively binds to the unphosphorylated form of mTid-1. In immunofluorescence experiments, GAP and Tid-1 were shown to colocalize at perinuclear mitochondrial membranes in response to epidermal growth factor stimulation. These findings raise the possibility that Tid chaperone proteins may play a role in governing the conformation, activity, and/or subcellular distribution of GAP, thereby influencing its biochemical and biological activity within cells.  相似文献   

18.
We have sequenced and defined the expression during rat embryogenesis of the protocadherin fat, the murine homologue of a Drosophila tumour suppressor gene. As previously described for human fat, the sequence encodes a large protocadherin with 34 cadherin repeats, five epidermal growth factor (EGF)-like repeats containing a single laminin A–G domain and a putative transmembrane portion followed by a cytoplasmic sequence. This cytoplasmic sequence shows homology to the β-catenin binding regions of classical cadherin cytoplasmic tails and also ends with a domain-binding motif. In situ hybridization studies at E15 show that fat is predominately expressed in fetal epithelial cell layers and in the CNS, although expression is also seen in tongue musculature and condensing cartilage. Within the CNS, expression is seen in the germinal regions and in areas of developing cortex, and this neural expression pattern is also seen at later embryonic (E18) and postnatal stages. No labelling was seen in adult tissues except in the CNS, where the remnant of the germinal zones, as well as the dentate gyrus, continue to express fat.  相似文献   

19.
《The Journal of cell biology》1993,121(5):1133-1140
The cadherin cell adhesion system plays a central role in cell-cell adhesion in vertebrates, but its homologues are not identified in the invertebrate. alpha-Catenins are a group of proteins associated with cadherins, and this association is crucial for the cadherins' function. Here, we report the cloning of a Drosophila alpha-catenin gene by low stringent hybridization with a mouse alpha E-catenin probe. Isolated cDNAs encoded a 110-kD protein with 60% identity to mouse alpha E- catenin, and this protein was termed D alpha-catenin. The gene of this protein was located at the chromosome band 80B. Immunostaining analysis using a mAb to D alpha-catenin revealed that it was localized to cell- cell contact sites, expressed throughout development and present in a wide variety of tissues. When this protein was immunoprecipitated from detergent extracts of Drosophila embryos or cell lines, several proteins co-precipitated. These included the armadillo product which was known to be a Drosophila homologue of beta-catenin, another cadherin-associated protein in vertebrates, and a 150-kD glycoprotein. These results strongly suggest that Drosophila has a cell adhesion machinery homologous to the vertebrate cadherin-catenin system.  相似文献   

20.
M Dziadek  M Paulsson    R Timpl 《The EMBO journal》1985,4(10):2513-2518
Nidogen was purified in its genuine form with a mol. wt. of 150 000 (Nd-150) and as fragments with mol. wts. of 100 000 (Nd-100) and 80 000 (Nd-80) from a mouse tumor basement membrane by preventing activity of endogenous proteases with 6 M guanidine and protease inhibitors. The larger forms of nidogen were also identified in stable complexes with laminin in neutral salt extracts of the tumor and in cell culture medium. Purified Nd-150 and Nd-100, but not Nd-80, were shown to interact with laminin in various binding assays, albeit with lower potential than estimated for the genuine complexes formed in situ. Binding of Nd-150 and Nd-100 to fibronectin and to the globular domain of collagen IV was also observed, but not to heparan sulfate proteoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号